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preface

The valuation of fixed-income securities and interest rate derivatives,
from the most simple structures to the complex structures found in the
structured finance and interest rate derivatives markets, depends on the
interest rate model and term structure model used by the investor. Interest
Rate, Term Structure, and Valuation Modeling provides a comprehensive
practitioner-oriented treatment of the various interest rate models, term
structure models, and valuation models. 

The book is divided into three sections. Section One covers interest
rate and term structure modeling. In Chapter 1, Oren Cheyette provides
an overview of the principles of valuation algorithms and the characteris-
tics that distinguish the various interest rate models. He then describes the
empirical evidence on interest rate dynamics, comparing a family of inter-
est rate models that closely match those in common use. The coverage
emphasizes those issues that are of principal interest to practitioners in
applying interest rate models. As Cheyette states: “There is little point in
having the theoretically ideal model if it can't actually be implemented as
part of a valuation algorithm.”

In Chapter 2, Peter Fitton and James McNatt clarify some of the
commonly misunderstood issues associated with interest rate models.
Specifically, they focus on (1) the choice between an arbitrage-free and an
equilibrium model and (2) the choice between risk neutral and realistic
parameterizations of a model. Based on these choices, they classify inter-
est rate models into four categories and then explain the proper use of
each category of interest rate model.

Stochastic differential equations (SDE) are typically used to model
interest rates. In a one-factor model, an SDE is used to represent the
short rate; in two-factor models an SDE is used for both the short rate
and the long rate. In Chapter 3 Gerald Buetow, James Sochacki, and I
review no-arbitrage interest rate models highlighting some significant
differences across models. The most significant differences are those due
to the underlying distribution and, as we stress in the chapter, indicates
the need to calibrate models to the market prior to their use. The mod-
els covered are the Ho-Lee model, the Hull-White model, the Kalotay-
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Williams-Fabozzi model, and the Black-Derman-Toy model. The bino-
mial and trinomial formulations of these models are presented.

Moorad Choudhry presents in Chapter 4 an accessible account of the
various term structure theories that have been advanced to explain the
shape of the yield curve at any time. While no one theory explains the
term structure at all times, a combination of two of these serve to explain
the yield curve for most applications.

In Chapter 5, David Audley, Richard Chin, and Shrikant Ramamur-
thy review the approaches to term structure modeling and then present an
eclectic mixture of ideas for term structure modeling. After describing
some fundamental concepts of the term structure of interest rates and
developing a useful set of static term structure models, they describe the
approaches to extending these into dynamic models. They begin with the
discrete-time modeling approach and then build on the discussion by
introducing the continuous-time analogies to the concepts developed for
discrete-time modeling. Finally, Audley, Chin, and Ramamurthy describe
the dynamic term structure model.

The swap term structure is a key benchmark for pricing and hedging
purposes. In Chapter 6, Uri Ron details all the issues associated with the
swap term structure derivation procedure. The approach presented by
Ron leaves the user with enough flexibility to adjust the constructed term
structure to the specific micro requirements and constraints of each pri-
mary swap market.

There have been several techniques proposed for fitting the term
structure with the technique selected being determined by the require-
ments specified by the user. In general, curve fitting techniques can be
classified into two types. The first type models the yield curve using a
parametric function and is therefore referred to as a parametric tech-
nique. The second type uses a spline technique, a technique for approxi-
mating the market discount function. In Chapter 7, Rod Pienaar and
Moorad Choudhry discuss the spline technique, focussing on cubic
splines and how to implement the technique in practice.

Critical to an interest rate model is the assumed yield volatility or
term structure of yield volatility. Volatility is measured in terms of the
standard deviation or variance. In Chapter 8, Wai Lee and I look at how
to measure and forecast yield volatility and the implementation issues
related to estimating yield volatility using observed daily percentage
changes in yield. We then turn to models for forecasting volatility, review-
ing the latest statistical techniques that can be employed.

The three chapters in Section Two explain how to quantify fixed-
income risk. Factor models are used for this purpose. Empirical evidence
indicates that the change in the level and shape of the yield curve are the
major source of risk for a fixed-income portfolio. The risk associated with
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changes in the level and shape of the yield curve are referred to as term
structure risk. In Chapter 9, Robert Kuberek reviews some of the leading
approaches to term structure factor modeling (arbitrage models, principal
component models, and spot rate and functional models), provides the
examples of each type of term structure factor model, and explains the
advantages and disadvantages of each. 

While the major source of risk for a fixed-income portfolio is term
structure risk, there are other sources of risk that must be accounted for
in order to assess a portfolio’s risk profile relative to a benchmark index.
These non-term structure risks include sector risk, optionality risk, pre-
payment risk, quality risk, and volatility risk. Moreover, the risk of a
portfolio relative to a benchmark index is measured in terms of tracking
risk. In Chapter 10, Lev Dynkin and Jay Hyman present a multi-factor
risk model that includes all of these risks and demonstrates how the
model can be used to construct a portfolio, rebalance a portfolio, and
control a portfolio’s risk profile relative to a benchmark. 

A common procedure used by portfolio and risk managers to assess
the risk of a portfolio is to shift or “shock” the yield curve. The outcome
of this analysis is an assessment of a portfolio’s exposure to term struc-
ture risk. However, there is a wide range of potential yield curve shocks
that a manager can analyze. In Chapter 11, Bennet Golub and Leo Tilman
provide a framework for defining and measuring the historical plausibil-
ity of a given yield curve shock. 

Section Three covers the approaches to valuation and the measure-
ment of option-adjusted spread (OAS). Valuation models are often
referred to as OAS models. In the first chapter of Section III, Chapter 12,
Philip Obazee explains the basic building blocks for a valuation model. 

In Chapter 13, Andrew Kalotay, Michael Dorigan, and I demonstrate
how an arbitrage-free interest rate lattice is constructed and how the lat-
tice can be used to value an option-free bond. In Chapter 14, we apply the
lattice-based valuation approach to the valuation of bonds with embed-
ded options (callable bonds and putable bonds), floaters, options, and
caps/floors. In Chapter 15, Gerald Buetow and I apply the lattice-based
valuation approach to value forward start swaps and swaptions. A meth-
odology for applying the lattice-based valuation approach to value path-
dependent securities is provided by Douglas Howard in Chapter 16.

The Monte Carlo simulation approach to valuing residential mortgage-
backed securities—agency products (passthroughs, collateralized mortgage
obligations, and mortgage strips), nonagency products, and real-estate backed
asset-backed securities (home equity loan and manufactured housing loan-
backed deals) is demonstrated by Scott Richard, David Horowitz, and me
in Chapter 17. An alternative to the Monte Carlo simulation approach for

http://abcbourse.ir/


xii Preface

valuing mortgage products is presented in Chapter 18 by Alexander Levin.
The approach he suggests uses low-dimensional grids.

In the last chapter, Chapter 19, the effect of mean reversion on the
value of a security and the option-adjusted spread is discussed by David
Audley and Richard Chin. 

I believe this book will be a valuable reference source for practitioners who
need to understand the critical elements in the valuation of fixed-income
securities and interest rate derivatives and the measurement of interest
rate risk.

I wish to thank the authors of the chapters for their contributions. A
book of this type by its very nature requires the input of specialists in a
wide range of technical topics and I believe that I have assembled some of
the finest in the industry.

                                                                          Frank J. Fabozzi
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CHAPTER 1

3

Interest Rate Models
Oren Cheyette, Ph.D.

Vice President
Fixed Income Research

BARRA, Inc.

n interest rate model is a probabilistic description of the future evolu-
tion of interest rates. Based on today’s information, future interest rates

are uncertain: An interest rate model is a characterization of that uncer-
tainty. Quantitative analysis of securities with rate dependent cash flows
requires application of such a model in order to find the present value of
the uncertainty. Since virtually all financial instruments other than default-
and option-free bonds have interest rate sensitive cash flows, this matters to
most fixed-income portfolio managers and actuaries, as well as to traders
and users of interest rate derivatives.

For financial instrument valuation and risk estimation one wants to
use only models that are arbitrage free and matched to the currently
observed term structure of interest rates. “Arbitrage free” means just that
if one values the same cash flows in two different ways, one should get the
same result. For example, a 10-year bond putable at par by the holder in
5 years can also be viewed as a 5-year bond with an option of the holder
to extend the maturity for another 5 years. An arbitrage-free model will
produce the same value for the structure viewed either way. This is also
known as the law of one price. The term structure matching condition
means that when a default-free straight bond is valued according to the
model, the result should be the same as if the bond’s cash flows are simply
discounted according to the current default-free term structure. A model
that fails to satisfy either of these conditions cannot be trusted for general
problems, though it may be usable in some limited context.

A
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4 INTEREST RATE AND TERM STRUCTURE MODELING

For equity derivatives, lognormality of prices (leading to the Black-
Scholes formula for calls and puts) is the standard starting point for
option calculations. In the fixed-income market, unfortunately, there is
no equally natural and simple assumption. Wall Street dealers routinely
use a multiplicity of models based on widely varying assumptions in dif-
ferent markets. For example, an options desk most likely uses a version
of the Black formula to value interest rate caps and floors, implying an
approximately lognormal distribution of interest rates. A few feet away,
the mortgage desk may use a normal interest rate model to evaluate
their passthrough and CMO durations. And on the next floor, actuaries
may use variants of both types of models to analyze their annuities and
insurance policies.

It may seem that one’s major concern in choosing an interest rate
model should be the accuracy with which it represents the empirical vol-
atility of the term structure of rates, and its ability to fit market prices of
vanilla derivatives such as at-the-money caps and swaptions. These are
clearly important criteria, but they are not decisive. The first criterion is
hard to pin down, depending strongly on what historical period one
chooses to examine. The second criterion is easy to satisfy for most
commonly used models, by the simple (though unappealing) expedient
of permitting predicted future volatility to be time dependent. So, while
important, this concern doesn’t really do much to narrow the choices. 

A critical issue in selecting an interest rate model is, instead, ease of
application. For some models it is difficult or impossible to provide effi-
cient valuation algorithms for all financial instruments of interest to a
typical investor. Given that one would like to analyze all financial
instruments using the same underlying assumptions, this is a significant
problem. At the same time, one would prefer not to stray too far from
economic reasonableness—such as by using the Black-Scholes formula
to value callable bonds. These considerations lead to a fairly narrow
menu of choices among the known interest rate models.

The organization of this chapter is as follows. In the next section I
provide a (brief) discussion of the principles of valuation algorithms.
This will give a context for many of the points made in the third section,
which provides an overview of the various characteristics that differen-
tiate interest rate models. Finally, in the fourth section I describe the
empirical evidence on interest rate dynamics and provide a quantitative
comparison of a family of models that closely match those in common
use. I have tried to emphasize those issues that are primarily of interest
for application of the models in practical settings. There is little point in
having the theoretically ideal model if it can’t actually be implemented
as part of a valuation algorithm.

1-Cheyette  Page 4  Thursday, August 29, 2002  9:58 AM

http://abcbourse.ir/
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VALUATION

Valuation algorithms for rate dependent contingent claims are usually
based on a risk neutral formula, which states that the present value of
an uncertain cash flow at time T is given by the average over all interest
rate scenarios of the scenario cash flow divided by the scenario value at
time T of a money market investment of $1 today.1 More formally, the
value of a security is given by the expectation (average) over interest
rate scenarios

(1)

where Ci is the security’s cash flows and Mi is the money market account
value at time ti in each scenario, calculated by assuming continual rein-
vestment at the prevailing short rate.

The probability weights used in the average are chosen so that the
expected rate of return on any security over the next instant is the same,
namely the short rate. These are the so-called “risk neutral” probability
weights: They would be the true weights if investors were indifferent to
bearing interest rate risk. In that case, investors would demand no
excess return relative to a (riskless) money market account in order to
hold risky positions—hence equation (1).

It is important to emphasize that the valuation formula is not
dependent on any assumption of risk neutrality. Financial instruments
are valued by equation (1) as if the market were indifferent to interest
rate risk and the correct discount factor for a future cash flow were the
inverse of the money market return. Both statements are false for the
real world, but the errors are offsetting: A valuation formula based on
probabilities implying a nonzero market price of interest rate risk and
the corresponding scenario discount factors would give the same value.

There are two approaches to computing the average in equation (1):
by direct brute force evaluation, or indirectly by solving a related differ-
ential equation. The brute force method is usually called the Monte
Carlo method. It consists of generating a large number of possible inter-
est rate scenarios based on the interest rate model, computing the cash
flows and money market values in each one, and averaging. Properly
speaking, only path generation based on random numbers is a Monte
Carlo method. There are other scenario methods—e.g., complete sam-
pling of a tree—that do not depend on the use of random numbers.

1 The money market account is the numeraire.

P E
Ci

Mi
-------

i
∑=
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6 INTEREST RATE AND TERM STRUCTURE MODELING

Given sufficient computer resources, the scenario method can tackle
essentially any type of financial instrument.2

A variety of schemes are known for choosing scenario sample paths
efficiently, but none of them are even remotely as fast and accurate as the
second technique. In certain cases (discussed in more detail in the next sec-
tion) the average in equation (1) obeys a partial differential equation—like
the one derived by Black and Scholes for equity options—for which there
exist fast and accurate numerical solution methods, or in special cases even
analytical solutions. This happens only for interest rate models of a particu-
lar type, and then only for certain security types, such as caps, floors, swap-
tions, and options on bonds. For securities such as mortgage passthroughs,
CMOs, index amortizing swaps, and for some insurance policies and annu-
ities, simulation methods are the only alternative.

MODEL TAXONOMY

The last two decades have seen the development of a tremendous profu-
sion of models for valuation of interest rate sensitive financial instruments.
In order to better understand these models, it is helpful to recognize a
number of features that characterize and distinguish them. These are fea-
tures of particular relevance to practitioners wishing to implement valua-
tion algorithms, as they render some models completely unsuitable for
certain types of financial instruments.3 The following subsections enumer-
ate some of the major dimensions of variation among the different models. 

One- versus Multi-Factor
In many cases, the value of an interest rate contingent claim depends, effec-
tively, on the prices of many underlying assets. For example, while the pay-
off of a caplet depends only on the reset date value of a zero coupon bond
maturing at the payment date (valued based on, say, 3-month LIBOR), the
payoff to an option on a coupon bond depends on the exercise date values
of all of the bond’s remaining interest and principal payments. Valuation of
such an option is in principle an inherently multidimensional problem.

Fortunately, in practice these values are highly correlated. The degree
of correlation can be quantified by examining the covariance matrix of

2 This is true even for American options. For a review see P. Boyle, M. Broadie, and
P. Glasserman, “Monte Carlo Methods for Security Pricing,” Journal of Economic
Dynamics and Control (1997), pp. 1267–1322.
3 There is, unfortunately, a version of Murphy’s law applicable to interest rate mod-
els, which states that the computational tractability of a model is inversely propor-
tional to its economic realism.
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Interest Rate Models 7

changes in spot rates of different maturities. A principal component
analysis of the covariance matrix decomposes the motion of the spot
curve into independent (uncorrelated) components. The largest principal
component describes a common shift of all interest rates in the same
direction. The next leading components are a twist, with short rates
moving one way and long rates the other, and a “butterfly” motion, with
short and long rates moving one way, and intermediate rates the other.
Based on analysis of weekly data from the Federal Reserve H15 series of
benchmark Treasury yields from 1983 through 1995, the shift compo-
nent accounts for 84% of the total variance of spot rates, while twist and
butterfly account for 11% and 4%, leaving about 1% for all remaining
principal components.

The shift factor alone explains a large fraction of the overall move-
ment of spot rates. As a result, valuation can be reduced to a one factor
problem in many instances with little loss of accuracy. Only securities
whose payoffs are primarily sensitive to the shape of the spot curve
rather than its overall level (such as dual index floaters, which depend
on the difference between a long and a short rate) will not be modeled
well with this approach. 

In principle it is straightforward to move from a one-factor model
to a multi-factor one. In practice, though, implementations of multi-factor
valuation models can be complicated and slow, and require estimation
of many more volatility and correlation parameters than are needed for
one-factor models, so there may be some benefit to using a one-factor
model when possible. The remainder of this chapter will focus on one-
factor models.4

Exogenous versus Endogenous Term Structure
The first interest rate models were not constructed so as to fit an arbi-
trary initial term structure. Instead, with a view towards analytical sim-
plicity, the Vasicek5 and Cox-Ingersoll-Ross6 (CIR) models contain a few
constant parameters that define an endogenously specified term struc-
ture. That is, the initial spot curve is given by an analytical formula in
terms of the model parameters. These are sometimes also called “equilib-
rium” models, as they posit yield curves derived from an assumption of

4 For an exposition of two-factor models, see D.F. Babbel and C.B. Merrill, Valua-
tion of Interest Sensitive Financial Instruments (New Hope, PA: Frank J. Fabozzi As-
sociates and Society of Actuaries, 1996).
5 O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of
Financial Economics (November 1977).
6 J.C. Cox, J.E. Ingersoll Jr., and S.A. Ross, “A Theory of the Term Structure of In-
terest Rates,” Econometrica (March 1985).
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8 INTEREST RATE AND TERM STRUCTURE MODELING

economic equilibrium based on a given market price of risk and other
parameters governing collective expectations.

For dynamically reasonable choices of the parameters—values that
give plausible long-run interest rate distributions and option prices—the
term structures achievable in these models have far too little curvature to
accurately represent typical empirical spot rate curves. This is because the
mean reversion parameter, governing the rate at which the short rate
reverts towards the long-run mean, also governs the volatility of long-
term rates relative to the volatility of the short rate—the “term structure
of volatility.” To achieve the observed level of long-rate volatility (or to
price options on long-term securities well) requires that there be relatively
little mean reversion, but this implies low curvature yield curves. This
problem can be partially solved by moving to a multi-factor framework—
but at a significant cost as discussed earlier. These models are therefore
not particularly useful as the basis for valuation algorithms—they simply
have too few degrees of freedom to faithfully represent real markets.

To be used for valuation, a model must be calibrated to the initial
spot rate curve. That is, the model structure must accommodate an
exogenously determined spot rate curve, typically given by fitting to
bond prices, or sometimes to futures prices and swap rates. All models
in common use are of this type.

There is a “trick” invented by Dybvig that converts an endogenous
model to a calibrated exogenous one.7 The trick can be viewed as split-
ting the nominal interest rate into two parts: the stochastic part mod-
eled endogenously, and a non-stochastic drift term, which compensates
for the mismatch of the endogenous term structure and the observed
one. (BARRA has used this technique to calibrate the CIR model in its
older fixed-income analytics.) The price of this method is that the vola-
tility function is no longer a simple function of the nominal interest rate.

Short Rate versus Yield Curve
The risk neutral valuation formula requires that one know the sequence
of short rates for each scenario, so an interest rate model must provide
this information. For this reason, many interest rate models are simply
models of the stochastic evolution of the short rate. A second reason for
the desirability of such models is that they have the Markov property,
meaning that the evolution of the short rate at each instant depends only
on its current value—not on how it got there. The practical significance
of this is that, as alluded to in the previous section, the valuation prob-

7 P. Dybvig, “Bond and Bond Option Pricing Based on the Current Term Structure,”
in M. A. H. Dempster and S. Pliska (eds.), Mathematics of Derivative Securities
(Cambridge, U.K.: Cambridge University Press, 1997).
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lem for many types of financial instruments can be reduced to solving a
partial differential equation, for which there exist efficient analytical and
numerical techniques. To be amenable to this calculation technique, a
financial instrument’s cash flow at time t must depend only on the state
of affairs at that time, not on how the evolution occurred prior to t, or it
must be equivalent to a portfolio of such securities (for example, a call-
able bond is a position long a straight bond and short a call option). 

Short-rate models have two parts. One specifies the average rate of
change (“drift”) of the short rate at each instant; the other specifies the
instantaneous volatility of the short rate. The conventional notation for
this is

(2)

The left-hand side of this equation is the change in the short rate over the
next instant. The first term on the right is the drift multiplied by the size
of the time step. The second is the volatility multiplied by a normally dis-
tributed random increment. For most models, the drift component must
be determined through a numerical technique to match the initial spot
rate curve, while for a small number of models there exists an analytical
relationship. In general, there exists a no-arbitrage relationship linking
the initial forward rate curve, the volatility 

 

σ(r,t), the market price of
interest rate risk, and the drift term 

 

µ(r,t). However, since typically one
must solve for the drift numerically, this relationship plays no role in
model construction. Differences between models arise from different
dependences of the drift and volatility terms on the short rate. 

For financial instruments whose cash flows don’t depend on the
interest rate history, the expectation formula (1) for present value obeys
the Feynman-Kac equation

(3)

where, for example, Pr denotes the partial derivative of P with respect to r,
c is the payment rate of the financial instrument, and 

 

λ, which can be time
and rate dependent, is the market price of interest rate risk. 

The terms in this equation can be understood as follows. In the absence
of uncertainty (

 

σ = 0), the equation involves four terms. The last three
assert that the value of the security increases at the risk-free rate (rP), and
decreases by the amount of any payments (c). The term (

 

µ − λ)Pr accounts
for change in value due to the change in the term structure with time, as
rates move up the forward curve. In the absence of uncertainty it is easy to

dr t( ) µ r t,( )dt σ r t,( )dz t( )+=

1
2
---σ2Prr µ λ–( )Pr Pt rP– c+ + + 0=
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10 INTEREST RATE AND TERM STRUCTURE MODELING

express (

 

µ − λ) in terms of the initial forward rates. In the presence of
uncertainty this term depends on the volatility as well, and we also have the
first term, which is the main source of the complexity of valuation models. 

The Vasicek and CIR models are models of the short rate. Both have
the same form for the drift term, namely a tendency for the short rate to
rise when it is below the long-term mean, and fall when it is above. That
is, the short-rate drift has the form 

 

µ = κ(θ − r), where r is the short rate
and

 

κ and 

 

θ are the mean reversion and long-term rate constants. The
two models differ in the rate dependence of the volatility: it is constant
(when expressed as points per year) in the Vasicek model, and propor-
tional to the square root of the short rate in the CIR model. 

The Dybvig-adjusted Vasicek model is the mean reverting generali-
zation of the Ho-Lee model,8 also known as the mean reverting Gauss-
ian (MRG) model or the Hull-White model.9 The MRG model has
particularly simple analytical expressions for values of many assets—in
particular, bonds and European options on bonds. Like the original
Vasicek model, it permits the occurrence of negative interest rates with
positive probability. However, for typical initial spot curves and volatil-
ity parameters, the probability of negative rates is quite small.

Other popular models of this type are the Black-Derman-Toy
(BDT)10 and Black-Karasinski11 (BK) models, in which the volatility is
proportional to the short rate, so that the ratio of volatility to rate level
is constant. For these models, unlike the MRG and Dybvig-adjusted
CIR models, the drift term is not simple. These models require numeri-
cal fitting to the initial interest rate and volatility term structures. The
drift term is therefore not known analytically. In the BDT model, the
short-rate volatility is also linked to the mean reversion strength (which
is also generally time dependent) in such a way that—in the usual situa-
tion where long rates are less volatile than the short rate—the short-rate
volatility decreases in the future. This feature is undesirable: One
doesn’t want to link the observation that the long end of the curve has
relatively low volatility to a forecast that in the future the short rate will

8 T.S.Y. Ho and S.B. Lee, “Term Structure Movements and Pricing Interest Rate
Contingent Claims,” Journal of Finance (December 1986); and, J. Hull and A.
White, “Pricing Interest Rate Derivative Securities,” The Review of Financial Stud-
ies, 3:4 (1990).
9 This model was also derived in F. Jamshidian, “The One-Factor Gaussian Interest
Rate Model: Theory and Implementation,” Merrill Lynch working paper, 1988.
10 F. Black, E. Derman and W. Toy, “A One Factor Model of Interest Rates and its
Application to Treasury Bond Options,” Financial Analysts Journal (January/Febru-
ary 1990).
11 F. Black and P. Karasinski, “Bond and Option Prices when Short Rates are Log-
normal,” Financial Analysts Journal (July/August 1992).
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Interest Rate Models 11

become less volatile. This problem motivated the development of the BK
model in which mean reversion and volatility are delinked.

All of these models are explicit models of the short rate alone. It
happens that in the Vasicek and CIR models (with or without the Dyb-
vig adjustment) it is possible to express the entire forward curve as a
function of the current short rate through fairly simple analytical for-
mulas. This is not possible in the BDT and BK models, or generally in
other models of short-rate dynamics, other than by highly inefficient
numerical techniques. Indeed, it is possible to show that the only short-
rate models consistent with an arbitrary initial term structure for which
one can find the whole forward curve analytically are in a class that
includes the MRG and Dybvig-adjusted CIR models as special cases,
namely where the short-rate volatility has the form12

.

While valuation of certain assets (e.g., callable bonds) does not require
knowledge of longer rates, there are broad asset classes that do. For
example, mortgage prepayment models are typically driven off a long-
term Treasury par yield, such as the 10-year rate. Therefore a generic
short-rate model such as BDT or BK is unsuitable if one seeks to analyze
a variety of assets in a common interest rate framework.

An alternative approach to interest rate modeling is to specify the
dynamics of the entire term structure. The volatility of the term structure is
then given by some specified function, which most generally could be a
function of time, maturity, and spot rates. A special case of this approach
(in a discrete time framework) is the Ho-Lee model mentioned earlier, for
which the term structure of volatility is a parallel shift of the spot rate
curve, whose magnitude is independent of time and the level of rates. A
completely general continuous time, multi-factor framework for construct-
ing such models was given by Heath, Jarrow, and Morton (HJM).13

It is sometimes said that all interest rate models are HJM models. This
is technically true: In principle, every arbitrage-free model of the term struc-
ture can be described in their framework. In practice, however, it is impossi-
ble to do this analytically for most short-rate Markov models. The only
ones for which it is possible are those in the MRG-CIR family described

12 A. Jeffrey, “Single Factor Heath-Jarrow-Morton Term Structure Models Based on
Markov Spot Interest Rate Dynamics,” Journal of Financial and Quantitative Anal-
ysis, 30:4 (December 1995). 
13 D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of
Interest Rates: A New Methodology for Contingent Claims Valuation,” Economet-
rica, 60:1 (January 1992).

σ r t,( ) σ1 t( ) σ2 t( )r+=
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12 INTEREST RATE AND TERM STRUCTURE MODELING

earlier. The BDT and BK models, for instance, cannot be translated to the
HJM framework other than by impracticable numerical means. To put a
model in HJM form, one must know the term structure of volatility at all
times, and this is generally not possible for short-rate Markov models.

If feasible, the HJM approach is clearly very attractive, since one
knows now not just the short rate but also all longer rates as well. In addi-
tion, HJM models are very “natural,” in the sense that the basic inputs to
the model are the initial term structure of interest rates and a term structure
of interest rate volatility for each independent motion of the yield curve. 

The reason for the qualification in the last paragraph is that a
generic HJM model requires keeping track of a potentially enormous
amount of information. The HJM framework imposes no structure other
than the requirement of no-arbitrage on the dynamics of the term struc-
ture. Each forward rate of fixed maturity evolves separately, so that one
must keep track of each one separately. Since there are an infinite num-
ber of distinct forward rates, this can be difficult. This difficulty occurs
even in a one factor HJM model, for which there is only one source of
random movement of the term structure. A general HJM model does not
have the Markov property that leads to valuation formulas expressed as
solutions to partial differential equations. This makes it impossible to
accurately value interest rate options without using huge amounts of
computer time, since one is forced to use simulation methods.

In practice, a simulation algorithm breaks the evolution of the term
structure up into discrete time steps, so one need keep track of and simulate
only forward rates for the finite set of simulation times. Still, this can be a
large number (e.g., 360 or more for a mortgage passthrough), and this com-
putational burden, combined with the inefficiency of simulation methods,
has prevented general HJM models from coming into more widespread use.

Some applications require simulation methods because the assets’
structures (e.g., mortgage-backed securities) are not compatible with
differential equation methods. For applications where one is solely
interested in modeling such assets, there exists a class of HJM models
that significantly simplify the forward rate calculations.14 The simplest
version of such models, the “two state Markov model,” permits an arbi-
trary dependence of short-rate volatility on both time and the level of
interest rates, while the ratio of forward-rate volatility to short-rate vol-
atility is solely a function of term. That is, the volatility of ƒ(t,T), the
term T forward rate at time t takes the form

14 O. Cheyette, “Term Structure Dynamics and Mortgage Valuation,” Journal of
Fixed Income (March 1992). The two state Markov model was also described in P.
Ritchken and L. Sankarasubramanian, “Volatility Structure of Forward Rates and
the Dynamics of the Term Structure,” Mathematical Finance, 5(1) (1995), pp. 55–72.
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Interest Rate Models 13

(4)

where σ(r,t) = σf(r,t,t) is the short-rate volatility and k(t) determines the
mean reversion rate or equivalently, the rate of decrease of forward rate
volatility with term. The evolution of all forward rates in this model can
be described in terms of two state variables: the short rate (or any other
forward or spot rate), and the slope of the forward curve at the origin.
The second variable can be expressed in terms of the total variance
experienced by a forward rate of fixed maturity by the time it has
become the short rate. The stochastic evolution equations for the two
state variables can be written as

(5)

where  is the deviation of the short rate from the ini-
tial forward rate curve. The state variable V(t) has initial value V(0)=0;
its evolution equation is non-stochastic and can be integrated to give

(6)

In terms of these state variables, the forward curve is given by

(7)

where

is a deterministic function.
Instead of having to keep track of hundreds of forward rates, one

need only model the evolution of the two state variables. Path indepen-
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14 INTEREST RATE AND TERM STRUCTURE MODELING

dent asset prices also obey a partial differential equation in this model,
so it appears possible, at least in principle, to use more efficient numeri-
cal methods. The equation, analogous to equation (3), is

. (8)

Unlike equation (3), for which one must use the equation itself
applied to bonds to solve for the coefficient µ−λ, here the coefficient
functions are all known in terms of the initial data: the short-rate vola-
tility and the initial forward curve. This simplification has come at the
price of adding a dimension, as we now have to contend also with a
term involving the first derivative with respect to V, and so the equation
is much more difficult to solve efficiently by standard techniques. 

In the special case where σ(r,t) is independent of r, this model is the
MRG model mentioned earlier. In this case, V is a deterministic function of
t, so the PV term disappears from equation (8), leaving a two-dimensional
equation that has analytical solutions for European options on bonds,
and straightforward numerical techniques for valuing American bond
options. Since bond prices are lognormally distributed in this model, it
should be no surprise that the formula for options on pure discount
bounds (PDB’s) looks much like the Black-Scholes formula. The value of
a call with strike price K, exercise date t on a PDB maturing at time T is
given by

, (9)

where

,

,

N(x) is the Gaussian distribution, and P(t) and P(T) are prices of PDB’s
maturing at t and T. (The put value can be obtained by put-call parity.)
Options on coupon bonds can be valued by adding up a portfolio of
options on PDBs, one for each coupon or principal payment after the
exercise date, with strike prices such that they are all at-the-money at

1
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Interest Rate Models 15

the same value of the short rate. The Dybvig-adjusted CIR model has
similar formulas for bond options, involving the non-central χ2 distribu-
tion instead of the Gaussian one.

If σ(r,t) depends on r, the model becomes similar to some other stan-
dard models. For example, σ(r,t)=a  has the same rate dependence as
the CIR model, while choosing σ(r,t)=br gives a model similar to BK,
though in each case the drift and term structure of volatility are different.

Unless one has some short- or long-term view on trends in short-
rate volatility, it is most natural to choose σ(r,t) to be time independent,
and similarly k(u) to be constant. This is equivalent to saying that the
shape of the volatility term structure—though not necessarily its magni-
tude—should be constant over time. (Otherwise, as in the BDT model,
one is imposing an undesirable linkage between today’s shape of the for-
ward rate volatility curve and future volatility curves.) In that case, the
term structure of forward-rate volatility is exponentially decreasing
with maturity, and the integrals in equations (6) and (7) can be com-
puted, giving for the forward curve

. (10)

Finally, if the volatility is assumed rate independent as well, the inte-
gral expression for V(t) can be evaluated to give 

, (11)

and we obtain the forward curves of the MRG model.
Empirically, neither the historical volatility nor the implied volatil-

ity falls off so neatly. Instead, volatility typically increases with term out
to between 1 and 3 years, then drops off. The two state Markov model
cannot accommodate this behavior, except by imposing a forecast of
increasing then decreasing short-rate volatility, or a short run of nega-
tive mean reversion. There is, however, an extension of the model that
permits modeling of humped or other more complicated volatility
curves, at the cost of introducing additional state variables.15 With five
state variables, for example, it is possible to model the dominant volatil-
ity term structure of the U.S. Treasury spot curve very accurately.

15 O. Cheyette, “Markov Representation of the HJM Model,” working paper, 1995.
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16 INTEREST RATE AND TERM STRUCTURE MODELING

EMPIRICAL AND NUMERICAL CONSIDERATIONS

Given the profusion of models, it is reasonable to ask whether there are
empirical or other considerations that can help motivate a choice of one
model for applications. One might take the view that one should use
whichever model is most convenient for the particular problem at hand—
e.g., BDT or BK for bonds with embedded options, Black model for caps
and floors, a two-state Markov model for mortgages, and a ten-state,
two-factor Markov-HJM model for dual index amortizing floaters. The
obvious problem with this approach is that it can’t be used to find hedg-
ing relationships or relative value between financial instruments valued
according to the different models. I take as a given, then, that we seek
models that can be used effectively for valuation of most types of finan-
cial instruments with minimum compromise of financial reasonableness.
The choice will likely depend on how many and what kinds of assets one
needs to value. A trader of vanilla options may be less concerned about
cross-market consistency issues than a manager of portfolios of callable
bonds and mortgage-backed securities.

The major empirical consideration—and one that has produced a
large amount of inconclusive research—is the assumed dependence of
volatility on the level of interest rates. Different researchers have
reported various evidence that volatility is best explained (1) as a power
of the short rate16 (σ∝rγ)—with γ so large that models with this volatility
have rates running off to infinity with high probability (“explosions”),
(2) by a GARCH model with very long (possibly infinite) persistence,17

(3) by some combination of GARCH with a power law dependence on
rates,18 (4) by none of the above.19 All of this work has been in the con-
text of short-rate Markov models. 

Here I will present some fairly straightforward evidence in favor of
choice (4) based on analysis of movements of the whole term structure
of spot rates, rather than just short rates, from U.S. Treasury yields over
the period 1977 to early 1996. 

The result is that the market appears to be well described by “eras”
with very different rate dependences of volatility, possibly coinciding
with periods of different Federal Reserve policies. Since all the models in

16 K.C. Chan, G.A. Karolyi, F.A. Longstaff, and A.B. Sanders, “An Empirical Com-
parson of Alternative Models of the Short Rate,” Journal of Finance 47:3 (1992).
17 See R.J. Brenner, R.H. Harjes, and K.F. Kroner, “Another Look at Alternative
Models of the Short-Term Interest Rate,” University of Arizona working paper
(1993), and references therein.
18 Ibid.
19 Y.Aït-Sahalia, “Testing Continuous Time Models of the Spot Interest Rate,” Re-
view of Financial Studies, 9:2 (1996).
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common use have a power law dependence of volatility on rates, I
attempted to determine the best fit to the exponent (γ) relating the two.
My purpose here is not so much to provide another entrant in this
already crowded field, but rather to suggest that there may be no simple
answer to the empirical question. No model with constant parameters
seems to do a very good job. A surprising result, given the degree to
which the market for interest rate derivatives has exploded and the
widespread use of lognormal models, is that the period since 1987 is
best modeled by a nearly normal model of interest rate volatility.

The data used in the analysis consisted of spot rate curves derived
from the Federal Reserve H15 series of weekly average benchmark
yields. The benchmark yields are given as semiannually compounded
yields of hypothetical par bonds with fixed maturities ranging from 3
months to 30 years, derived by interpolation from actively traded issues.
The data cover the period from early 1977, when a 30-year bond was
first issued, through March of 1996. The spot curves are represented as
continuous, piecewise linear functions, constructed by a root finding
procedure to exactly match the given yields, assumed to be yields of par
bonds. (This is similar to the conventional bootstrapping method.) The
two data points surrounding the 1987 crash were excluded: The short
and intermediate markets moved by around ten standard deviations
during the crash, and this extreme event would have had a significant
skewing effect on the analysis.

A parsimonious representation of the spot curve dynamics is given
by the two-state Markov model with constant mean reversion k and vol-
atility that is time independent and proportional to a power of the short
rate: σ = βrγ. In this case, the term structure of spot rate volatility, given
by integrating equation (4), is

(12)

where T is the maturity and rt is the time t short rate. The time t weekly
change in the spot rate curve is then given by the change due to the passage
of time (“rolling up the forward curve”) plus a random change of the form
v(T)xt, where for each t, xt, is an independent normal random variable with
distribution N(µ, σ(rt) ). (The systematic drift µ of xt, over time was
assumed to be independent of time and the rate level.) The parameters β, γ,
and k are estimated as follows. First, using an initial guess for γ, k is esti-
mated by a maximum likelihood fit of the maturity dependence of v(T) to
the spot curve changes. Then, using this value of k, another maximum like-
lihood fit is applied to fit the variance of xt to the power law model of σ(rt).

σ rt( )v T( ) βrt
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18 INTEREST RATE AND TERM STRUCTURE MODELING

The procedure is then iterated to improve the estimates of k and γ
(although it turns out that the best fit of k is quite insensitive to the value of
γ, and vice versa). 

One advantage of looking at the entire term structure is that we avoid
modeling just idiosyncratic behavior of the short end, e.g., that it is largely
determined by the Federal Reserve. An additional feature of this analysis is
proper accounting for the effect of the “arbitrage-free drift”—namely, the
systematic change of interest rates due purely to the shape of the forward
curve at the start of each period. Prior analyses have typically involved fit-
ting to endogenous short-rate models with constant parameters not cali-
brated to each period’s term structure. The present approach mitigates a
fundamental problem of prior research in the context of one-factor models,
namely that interest rate dynamics are poorly described by a single factor.
By reinitializing the drift parameters at the start of each sample period and
studying the volatility of changes to a well-defined term structure factor, the
effects of additional factors are excluded from the analysis.

The results for the different time periods are shown in Exhibit 1.1.
(The exhibit doesn’t include the best fit values of β, which are not relevant
to the empirical issue at hand.) The error estimates reported in the exhibit
are derived by a bootstrap Monte Carlo procedure that constructs artifi-
cial data sets by random sampling of the original set with replacement
and applies the same analysis to them.20 It is apparent that the different
subperiods are well described by very different exponents and mean
reversion. The different periods were chosen to include or exclude the
monetarist policy “experiment” under Volcker of the late 1970s and early
1980s, and also to sample just the Greenspan era. For the period since
1987, the best fit exponent of 0.19 is significantly different from zero at
the 95% confidence level, but not at the 99% level. However, the best fit
value is well below the threshold of 0.5 required to guarantee positivity of
interest rates, with 99% confidence. There appears to be weak sensitivity
of volatility to the rate level, but much less than is implied by a number of
models in widespread use—in particular, BDT, BK, and CIR.

The estimates for the mean reversion parameter k can be understood
through the connection of mean reversion to the term structure of volatil-
ity. Large values of k imply large fluctuations in short rates compared to
long rates, since longer rates reflect the expectation that changes in short
rates will not persist forever. The early 1980s saw just such a phenome-
non, with the yield curve becoming very steeply inverted for a brief
period. Since then, the volatility of the short rate (in absolute terms of
points per year) has been only slightly higher than that of long-term rates.

20 B.J. Efron and R.J. Tibshirani, An Introduction to the Bootstrap (New York:
Chapman & Hall, 1993).
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* The uncertainties are one standard deviation estimates based on bootstrap Monte
Carlo resampling.

EXHIBIT 1.2  52-Week Volatility of Term Structure Changes Plotted Against the 3-
Month Spot Rate at the Start of the Period

The x’s are periods starting 3/77 through 12/86. The diamonds are periods starting
1/87 through 3/95. The data points are based on the best fit k for the period 1/87–3/96,
as described in the text. The solid curve shows the best fit to a power law model. The
best fit parameters are β=91 bp, γ=0.19. (This is not a fit to the points shown here,
which are provided solely to give a visual feel for the data.)

Exhibit 1.2 gives a graphical representation of the data. There is
clear evidence that the simple power law model is not a good fit and that
the data display regime shifts. The exhibit shows the volatility of the fac-
tor in equation (12) using the value of k appropriate to the period Janu-
ary 1987–March 1996 (the “Greenspan era”). The vertical coordinate of

EXHIBIT 1.1  Parameter Estimates for the Two-State Markov Model with Power 
Law Volatility over Various Sample Periods*

Sample Period Exponent (γ) Mean Reversion (k) Comments

3/1/77–3/29/96 1.04 ± 0.07 0.054 ± 0.007 Full data set
3/1/77–1/1/87 1.6   ± 0.10 0.10   ± 0.020 Pre-Greenspan
3/1/77–1/1/83 1.72 ± 0.15 0.22   ± 0.040 “Monetarist”policy
1/1/83–3/29/96 0.45 ± 0.07 0.019 ± 0.005 Post high-rate period
1/1/87–3/29/96 0.19 ± 0.09 0.016 ± 0.004 Greenspan
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20 INTEREST RATE AND TERM STRUCTURE MODELING

each dot represents the volatility of the factor over a 52-week period; the
horizontal coordinate shows the 3-month spot rate (a proxy for the short
rate) at the start of the 52-week period. (Note that the maximum likeli-
hood estimation is not based on the data points shown, but on the indi-
vidual weekly changes.) The dots are broken into two sets: The x’s are
for start dates prior to January 1987, the diamonds for later dates.
Divided in this way, the data suggest fairly strongly that volatility has
been nearly independent of interest rates since 1987—a time during
which the short rate has ranged from around 3% to over 9%.

From an empirical perspective, then, no simple choice of model
works well. Among the simple models of volatility, the MRG model most
closely matches the recent behavior of U.S. Treasury term structure.

There is an issue of financial plausibility here, as well as an empirical
one. Some models permit interest rates to become negative, which is
undesirable, though how big a problem this is isn’t obvious. The class of
simple models that provably have positive interest rates without suffering
from explosions and match the initial term structure is quite small. The
BDT and BK models satisfy these conditions, but don’t provide informa-
tion about future yield curves as needed for the mortgage problem. The
Dybvig-adjusted CIR model also satisfies the conditions, but is somewhat
hard to work with. There is a lognormal HJM model that avoids negative
rates, but it is analytically intractable and suffers from explosions.21 The
lognormal version of the two-state Markov model also suffers from
explosions, though, as with the lognormal HJM model, these can be elim-
inated by capping the volatility at some large value. 

It is therefore worth asking whether the empirical question is impor-
tant. It might turn out to be unimportant in the sense that, properly com-
pared, models that differ only in their assumed dependence of volatility
on rates actually give similar answers for option values. 

The trick in comparing models is to be sure that the comparisons are
truly “apples to apples,” by matching term structures of volatility. It is
easy to imagine getting different results valuing the same option using the
MRG, CIR, and BK models, even though the initial volatilities are set
equal—not because of different assumptions about the dependence of vol-
atility on rates, but because the long-term volatilities are different in the
three models even when the short-rate volatilities are the same. There are
a number of published papers claiming to demonstrate dramatic differ-
ences between models, but which actually demonstrate just that the mod-
els have been calibrated differently.22

21 Heath, Jarrow, and Morton, “Bond Pricing and the Term Structure of Interest
Rates: A New Methodology for Contingent Claims Valuation.”
22 For a recent example, see M. Uhrig and U. Walter, “A New Numerical Approach
to Fitting the Initial Yield Curve,” Journal of Fixed Income (March 1996).
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The two-state Markov framework provides a convenient means to com-
pare different choices for the dependence of volatility on rates while holding
the initial term structure of volatility fixed. Choosing different forms for
σ(r) while setting k to a constant in expression (4) gives exactly this compar-
ison. We can value options using these different assumptions and compare
time values. (Intrinsic value—the value of the option when the volatility is
zero—is of course the same in all models.) To be precise, we set σ(r, t)
= σ0(r/r0)γ, where σ0 is the initial annualized volatility of the short rate in
absolute terms (e.g., 100 bp/year) and r0  is the initial short rate. Choosing
the exponent γ = {0, 0.5, 1} then gives the MRG model, a square root vola-
tility model (not CIR), and a lognormal model (not BK), respectively. 

The results can be summarized by saying that a derivatives trader
probably cares about the choice of exponent γ, but a fixed-income portfo-
lio manager probably doesn’t. The reason is that the differences in time
value are small, except when the time value itself is small—for deep in- or
out-of-the-money options. A derivatives trader may be required to price a
deep out-of-the-money option, and would get very different results across
models, having calibrated them using at-the-money options. A portfolio
manager, on the other hand, has option positions embedded in bonds,
mortgage-backed securities, etc., whose time value is a small fraction of
total portfolio value. So differences that show up only for deep in- or out-
of-the-money options are of little consequence. Moreover, a deep out-of-
the-money option has small option delta, so small differences in valuation
have little effect on measures of portfolio interest rate risk. An in-the-
money option can be viewed as a position in the underlying asset plus an
out-of-the-money option, so the same reasoning applies.

Exhibit 1.3 shows the results of one such comparison for a 5-year
quarterly pay cap, with a flat initial term structure and modestly decreas-
ing term structure of volatility. The time value for all three values of γ
peaks at the same value for an at-the-money cap. Caps with higher strike
rates have the largest time value in the lognormal model, because the vol-
atility is increasing for rate moves in the direction that make them valu-
able. Understanding the behavior for lower strike caps requires using put-
call parity: An in-the-money cap can be viewed as paying fixed in a rate
swap and owning a floor. The swap has no time value, and the floor has
only time value (since it is out-of-the money). The floor’s time value is
greatest for the MRG model, because it gives the largest volatility for rate
moves in the direction that make it valuable. In each case, the square root
model gives values intermediate between the MRG and lognormal mod-
els, for obvious reasons. At the extremes, 250 bp in or out of the money,
time values differ by as much as a factor of 2 between the MRG and log-
normal models. At these extremes, though, the time value is only a tenth
of its value for the at-the-money cap. 
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22 INTEREST RATE AND TERM STRUCTURE MODELING

EXHIBIT 1.3  Time Values for Five-Year Quarterly Pay Caps for Gaussian, Square 
Root, and Lognormal Two-State Markov Models with Identical Initial Term 
Structure of Volatility and a 7% Flat Initial Yield Curve*

* The model parameters (described in the text) are σ0=100 bp/yr., k=0.02/yr., equiv-
alent to an initial short-rate volatility of 14.8%, and a 10-year yield volatility of
13.6%.

If the initial term structure is not flat, the model differences can be
larger. For example, if the term structure is positively sloped, then the
model prices match up for an in-the-money rather than at-the-money
cap. Using the same parameters as for Exhibit 1.3, but using the actual
Treasury term structure as of 5/13/96 instead of a flat 7% curve, the
time values differ at the peak by about 20%—about half a point—
between the MRG and lognormal models. Interestingly, as shown in
Exhibit 1.4, even though the time values can be rather different, the
option deltas are rather close for the three models. (The deltas are even
closer in the flat term structure case.) In this example, if a 9.5% cap
were embedded in a floating-rate note priced around par, the effective
duration attributable to the cap according to the lognormal model
would be 0.49 year, while according to the MRG model it would be
0.17 year. The difference shrinks as the rate gets closer to the cap. This
¹⁄₃ year difference isn’t trivial, but it’s also not large compared to the
effect of other modeling assumptions, such as the overall level of volatil-
ity or, if mortgages are involved, prepayment expectations.
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EXHIBIT 1.4  Sensitivity of Cap Value to Change in Rate Level as a Function of Cap 
Rate*

* The cap structure and model parameters are the same as used for Exhibit 1.3, ex-
cept that the initial term structure is the (positively sloped) U.S. Treasury curve as of
5/13/96. The short rate volatility is 19.9% and the ten-year yield volatility is 14.9%.

These are just two numerical examples, but it is easy to see how dif-
ferent variations would affect these results. An inverted term structure
would make the MRG model time value largest at the peak and the log-
normal model value the smallest. Holding σ0 constant, higher initial
interest rates would yield smaller valuation differences across models
since there would be less variation of volatility around the mean. Larger
values of the mean reversion k would also produce smaller differences
between models, since the short-rate distribution would be tighter
around the mean.

Finally, there is the question raised earlier as to whether one should
be concerned about the possibility of negative interest rates in some
models. From a practical standpoint, this is an issue only if it leads to a
significant contribution to pricing from negative rates. One simple way
to test this is to look at pricing of a call struck at par for a zero coupon
bond. Exhibit 1.5 shows such a test for the MRG model. For reasonable
parameter choices (here taken to be σ0=100 bp/year, k = 0.02/year, or
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24 INTEREST RATE AND TERM STRUCTURE MODELING

20% volatility of a 5% short rate), the call values are quite modest,
especially compared to those of a call on a par bond, which gives a feel
for the time value of at-the-money options over the same period. The
worst case is a call on the longest maturity zero-coupon bond which,
with a flat 5% yield curve, is priced at 0.60. This is just 5% of the value
of a par call on a 30-year par bond. Using the actual May 1996 yield
curve, all the option values—other than on the 30-year zero—are negli-
gible. For the 30-year zero the call is worth just 1% of the value of the
call on a 30-year par bond. In October 1993, the U.S. Treasury market
had the lowest short rate since 1963, and the lowest 10-year rate since
1967. Using that yield curve as a worst case, the zero coupon bond call
values are only very slightly higher than the May 1996 values, and still
effectively negligible for practical purposes.

Again, it is easy to see how these results change with different
assumptions. An inverted curve makes negative rates likelier, so increases
the value of a par call on a zero-coupon bond. (On the other hand,
inverted curves at low interest rate levels are rare.) Conversely, a positive
slope to the curve makes negative rates less likely, decreasing the call
value. Holding σ0  constant, lower interest rates produce larger call val-
ues. Increasing k produces smaller call values. The only circumstances
that are really problematic for the MRG model are flat or inverted yield
curves at very low rate levels, with relatively high volatility.

EXHIBIT 1.5  Valuation of a Continuous Par Call on Zero Coupon and Par Bonds of 
Various Maturities in the MRG Model
Model parameters are: 

The value of the call on the zero coupon bond should be zero in every case, assuming
non-negative interest rates.

σ0 = 100 bp/year
k = 0.02/year

5%
Flat Curve

7%
Flat Curve

5/96
U.S. Tsy. Yields

10/93
U.S. Tsy. Yields

Term
Zero
Cpn.

Par
Bond

Zero
Cpn.

Par
Bond

Zero
Cpn.

Par
Bond

Zero
Cpn.

Par
Bond

  3-year <0.01   0.96 <0.01 0.93 <0.01 0.65 <0.01 0.62
  5-year <0.01   1.93 <0.01 1.83 <0.01 1.43 <0.01 1.27
10-year   0.06   4.54 <0.01 4.07 <0.01 3.47   0.02 3.06
30-year   0.60 11.55   0.10 8.85   0.08 7.86   0.09 7.26
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CONCLUSIONS

For portfolio analysis applications, the mean reverting Gaussian model has
much to recommend it. For this model, it is easy to implement valuation
algorithms for both path independent financial instruments such as bond
options, and path dependent financial instruments such as CMOs and
annuities. It is one of the simplest models in which it is possible to follow
the evolution of the entire yield curve (à la HJM), making it especially use-
ful for valuing assets like mortgage-backed securities whose cash flows
depend on longer term rates. The oft raised bogeyman of negative interest
rates proves to have little consequence for option pricing, since negative
rates occur with very low probability for reasonable values of the model
parameters and initial term structure.

Option values are somewhat (though not very) sensitive to the
assumed dependence of volatility on the level of rates. The empirical evi-
dence on this relationship is far from clear, with the data (at least in the
United States) showing evidence of eras, possibly associated with central
bank policy. The numerical evidence shows that, for a sloped term struc-
ture, different power law relationships give modestly different at-the-
money option time values, and larger relative differences for deep in- or
out-of-the-money options. These differences are unlikely to be significant
to fixed-income portfolio managers, but are probably a concern for deriv-
atives traders.
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odels of the term structure of interest rates are becoming increasingly
important in the practice of finance and actuarial science. However,

practitioner understanding of these models has not always kept pace with
the breadth of their application. In particular, misinterpretation of the
proper uses of a particular model can lead to significant errors. In this
chapter, we attempt to clear up some of the most commonly misconstrued
aspects of interest rate models: the choice between an arbitrage-free or
equilibrium model, and the choice between risk neutral or realistic parame-
terizations of a model. These two dimensions define four classes of model
forms, each of which has its own proper use.

Much of the confusion has arisen from overuse and misuse of the
term “arbitrage-free.” Virtually all finance practitioners believe that mar-
ket participants quickly take advantage of any opportunities for risk-free
arbitrage among financial assets, so that these opportunities do not exist

M

* The authors would like to thank David Becker of Lincoln National Life for asking
the questions that motivated this chapter, and for the many helpful comments that
were applied herein. Any remaining errors are the authors’ alone. 
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28 INTEREST RATE AND TERM STRUCTURE MODELING

for long; thus, the term “arbitrage-free” sounds as if it would be a good
characteristic for any model to have. Simply based on these positive con-
notations, it almost seems hard to believe that anyone would not want
their model to be arbitrage-free. Briefly, in the world of finance this
expression has the associations of motherhood and apple pie.

Unfortunately, this has led some users (and even builders) of interest
rate models to link uncritically the expression “arbitrage-free” with the
adjective “good.” One objective of this chapter is to show that arbitrage-
free models are not appropriate for all purposes. Further, we show that
just because a model uses the arbitrage-free approach does not mean that
it is necessarily good, even for the purposes for which arbitrage-free mod-
els are appropriately used.

Another common confusion ensues from implicitly equating the terms
“arbitrage-free” and “risk neutral.” This arises partly from the fact that, in
the academic and practitioner literature, there have been very few papers
which have applied the arbitrage-free technique to a model that was not in
risk neutral form. We explain the reason for this below. The natural result
is that the terms have sometimes been used interchangeably. In addition,
since quantitative risk management is a relatively new concept to the
finance community, most well-known papers have focused only on the
application of interest rate models to simple valuation and hedging prob-
lems. These have not required either the realistic or equilibrium approaches
to modeling. This lack of published work has led to a mistaken belief that
an arbitrage-free, risk neutral model is the only valid kind of term structure
model. In this chapter, we intend to dispel that notion.

CATEGORIZATION OF APPROACHES
TO TERM STRUCTURE MODELING

Arbitrage-Free Modeling
Arbitrage-free models take certain market prices as given, and adjust model
parameters in order to fit the prices exactly. Despite being called “term
structure” models, they do not in reality attempt to emulate the dynamics
of the term structure. Instead, they assume some computationally conve-
nient, but essentially arbitrary, random process underlying the yield curve,
and then add time dependent constants to the drift (mean) and volatility
(standard deviation) of the process until all market prices are matched. To
achieve this exact fit, they require at least one parameter for every market
price used as an input to the model.

For valuation, it is possible to produce reasonable current prices
for many assets without having a realistic term structure model, by using
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arbitrage-free models for interpolation among existing prices. To this end,
the trading models used by most dealers in the over-the-counter deriva-
tives market employ enormous numbers of time dependent parameters.
These achieve an exact fit to prices of assets in particular classes, without
regard to any differences between the behaviors of the models and the
actual behavior of the term structure over time. Placed in terms of a phys-
ical analogy, the distinction here is between creating a robot based on a
photograph of an animal, and creating a robot based on multiple obser-
vations of the animal through time. While the robot produced using only
the photograph may look like the animal, only the robot built based on
behavioral observations will act like the animal. An arbitrage-free model
is like the former robot, constructed with reference to only a single point
in time; that is, a snapshot of the fixed-income marketplace.

As an example of an arbitrage-free model, at RISK Magazine’s
“Advanced Mathematics for Derivatives” conference in New York on Octo-
ber 26 and 27, 1995, Merrill Lynch’s Greg Merchant presented a linear nor-
mal model that used time dependent drifts, volatilities, and correlations to
reproduce prices in the Eurodollar, cap, and swaption markets, respectively.
It is important to realize that an arbitrage-free model such as this one is just
an interpolation system, which reads prices off some complicated hyper-
surface that passes through each of the points at which prices are known.

Equilibrium Modeling
In contrast to arbitrage-free models, equilibrium term structure models are
truly models of the term structure process. Rather than interpolating among
prices at one particular point in time, they attempt to capture the behaviors
of the term structure over time. An equilibrium model employs a statistical
approach, assuming that market prices are observed with some statistical
error, so that the term structure must be estimated, rather than taken as
given. Equilibrium models do not exactly match market prices at the time of
estimation, because they use a small set of state variables (fundamental
components of the interest rate process) to describe the term structure.
Extant equilibrium models do not contain time dependent parameters;
instead they contain a small number of statistically estimated constant
parameters, drawn from the historical time series of the yield curve.

Risk Neutral Probabilities: 
The Derivative Pricing Probability Measure
When we create a model for pricing interest rate derivatives, the “under-
lying” is not the price of a traded security, as it would be in a model for
equity options. Instead, we specify a random process for the instanta-
neous, risk-free spot interest rate, the rate payable on an investment in
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30 INTEREST RATE AND TERM STRUCTURE MODELING

default-free government bonds for a very short period of time. For conve-
nience, we call this interest rate “the short rate.” Financial analysts have
chosen to create models around the short rate because it is the only truly
riskless interest rate in financial markets. An investment in default-free
bonds for any non-instantaneous period of time carries market risk, the
chance that the short rate will rise during the term of the investment,
leading to a decline in the investment’s value.

As with any risky investment, an investor in bonds subject to mar-
ket risk expects to earn a risk-free return (that is, the return from con-
tinuously investing at the short rate, whatever that may be) plus a risk
premium, which could increase or decrease as the term of the invest-
ment increases. Thus, the spot rate for a particular term is composed of
the return expected under the random process for the short rate up to
the end of that term, plus a term premium, an additional return to com-
pensate the investor for the interest rate risk of the investment. The term
premium offered in the market depends on the aggregate risk preference
of market participants, taking into account their natural preferences for
securities that conform to their investment (term) needs.

Let rt be the short rate at time t. Let D(t, T) be the price, at time t, of
a discount bond paying one dollar at time T. Let s(t, T) be the spot rate at
time t for the term (T

 

−t). Finally, let 

 

φ(T

 

−t) be the term premium
(expressed as an annual excess rate of return) required by investors for a
term of (T

 

−t). All rates are continuously compounded. We can then write,

(1)

The second term in the two-term expression above is a discount factor that
reflects the expected return from investing continuously at the short rate
for the term (T

 

−t). The first term is the additional discount factor that
accounts for the return premium that investors require to compensate
them for the market risk of investing for a term of (T

 

−t). The use of an integral
in the expression for the expected short rate discount factor is necessary
because the short rate is continuously changing over the bond’s term.

From this description and formula, it may seem necessary to know
the term premium for every possible term, in addition to knowing the
random process for the short rate, in order to value a default-free dis-
count bond. This is not the case, however. As in the pricing of a forward
contract or option on a stock, we can use the mathematical sleight-of-
hand known as risk neutral valuation to find the relative value of a secu-
rity that is derivative of the short rate.
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The principle of risk neutral valuation as it applies to bonds and other
interest rate derivatives is that, regardless of how risk averse investors are,
we can identify a set of spot rates that value discount bonds correctly rela-
tive to the rest of the market. We do not have to identify separately the
term premium embedded in each spot rate in order to use it to discount
future cash flows. This fact can be used to make the valuation of all inter-
est rate derivatives easier by risk adjusting the term structure model; that
is, by changing the probability distribution of the short rate so that the
spot rate of every term is, under the new model, equal to the expected
return from investing at the short rate over the same term. This is accom-
plished by redefining the model so that, instead of being a random process
for the short rate, it is a random process for the short rate plus a function
of the term premium. If we specify the process for  in such a way that

(2)

at every future point in time s (accomplished by adjusting the rate of
increase of rt upward) then we can write,

(3)

By transforming the short rate process in this manner, we have cre-
ated a process for a random variable which, when used to discount a cer-
tain future cash flow, gives an expected present value equal to the present
value obtained by discounting that cash flow at the appropriate spot rate.
It is important to note that this random variable is no longer the short
rate, but something artificial that we might refer to as the risk adjusted
short rate.1

1 This is not the way that risk neutrality is usually presented. Typically, writers have
focused on the stochastic calculus, using Girsanov’s Theorem to justify a change of
probability measure to an equivalent (i.e., an event has zero probability under one
measure if and only if it has zero probability under the other measure) martingale
measure. This complexity and terminology can obscure the simple intuition that we
are making a change of variables in order to restate the problem in a more easily solv-
able form. For this approach to explaining risk neutral valuation, see G. Courtadon,
“The Pricing of Options on Default-free Bonds,” Journal of Financial and Quantita-
tive Analysis (March 1982), pp. 301–329, or J. Harrison and S. Pliska, “Martingales
and Stochastic Integrals in the Theory of Continuous Trading,” Stochastic Processes
and their Applications (1981), pp. 215–260.
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The resulting risk neutral model might be construed as a model for the
true behavior of the short rate in an imaginary world of risk neutral market
participants, where there is no extra expected return to compensate inves-
tors for the extra price risk in bonds of longer maturity. This impression,
while accurate, is not very informative. The important aspect of the risk
neutral model is that the term premia, whatever their values, that exist in
the marketplace are embedded in the interest rate process itself, so that the
expected discounted value of a cash flow at the risk adjusted short rate is
equal to the discounted value of the cash flow at the spot rate.2

The value of the risk neutral probability measure is that, under this
parameterization, an interest-sensitive instrument’s price can be estimated
by averaging the present values of its cash flows, discounted at the short
term interest rates along each path of the short rate under which those
cash flows occur. In contrast, valuing assets under the model before it was
risk adjusted would require a more complicated discounting procedure
which applied additional discount factors to the short rate paths to com-
pensate for market risk; however, the price obtained under both
approaches would be the same. For this reason, we use randomly gener-
ated scenarios from risk neutral interest rate models for pricing.

To sum up, there is nothing magical about risk neutrality. There are
any number of changes of variables we could make to a short rate process
that would retain the structure of the model, but have a different (but
equivalent) probability distribution for the new variable. We could
change the measure to represent imaginary worlds in which market par-
ticipants were risk seeking (negative term premia), or more risk averse
than in the real world; regardless, as long as we structured the discount-
ing procedure properly we would always determine the same model price
for an interest rate derivative. The specific change of variables that pro-
duces a risk neutral model simply makes the algebra easier than the oth-
ers, because one can ignore risk preferences.

Realistic Probabilities:
The Estimated Market Probability Measure
We have described why risk neutral interest rate scenarios are preferred for
pricing bonds and interest rate derivatives. However, it is important to note

2 Note that this is not the same as the expectations hypothesis of the term structure,
which holds that the term structure’s shape is determined solely by the market’s ex-
pectations about future rates. The expectations hypothesis is a theory of the real term
structure process, whereas the risk neutral approach is an analytical convenience
which takes no position about the truth or falsity of any term structure theory. For
a brief, cogent discussion of the expectations hypothesis in contrast to risk neutral
pricing, see Don Chance, “Theories of the Term Structure: Part I,” Essays in Deriv-
atives (New Hope, PA: Frank J. Fabozzi Associates, 1998).
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that risk neutral scenarios are not appropriate for all purposes. For exam-
ple, for scenario-based evaluation of portfolio strategies, realistic simula-
tion is needed. And a computerized system for stress testing asset/liability
strategies under adverse movements in interest rates is to actuaries what a
wind tunnel is to aerospace engineers. The relevance of the information
provided by the testing depends completely on the realism of the simulated
environment. Stated differently, the test environment must be like the real
environment; if not, the test results are not useful.

The realistic term structure process desired for this kind of stress test-
ing must be distinguished from the risk neutral term structure process
used for pricing. The risk neutral process generates scenarios in which all
term premia are zero. This process lacks realism; in the real world, term
premia are clearly not zero, as evidenced by the fact that the implied spot
curve from Treasuries has been upward sloping 85% of the time in the
1955–1994 period.3 This predominantly upward slope reflects an
expected return premium for bonds of longer maturity, although approxi-
mately 15% of the time some other configuration of buyer preferences
can be inferred; for example, an inverted curve suggests that buyers
demand an increasing premium for decreasing the term of their positions.

Thus, the user of an interest rate model must be careful. When gener-
ating scenarios for reserve adequacy testing, where the purpose is to
examine the effect on a company’s balance sheet of changes in the real
(risk averse) world, he must not use the scenarios from a risk neutral
interest rate model.

WHEN DO I USE EACH OF THE MODELING APPROACHES?

The two dimensions, risk neutral versus realistic and arbitrage-free versus
equilibrium, define four classes of modeling approaches. Each has its
appropriate use.

Risk Neutral and Arbitrage-Free
The risk neutral and arbitrage-free model is the most familiar form of an
interest rate model for most analysts. The model has been risk adjusted to
use for pricing interest rate derivatives, and its parameters have been inter-

3 This fact is one of the many useful observations about the realistic term structure
process appearing in David Becker, Stylized Historical Facts Regarding Treasury In-
terest Rates from 1955 to 1994 (Fort Wayne, IN: Technical report, Lincoln National
Life, 1995). See also David Becker, “The Frequency of Inversions of the Yield Curve,
and Historical Data on the Volatility and Level of Interest Rates,” Risks and Re-
wards (October 1991), pp. 3–5.
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polated from a set of current market prices rather than being statistically
estimated from historical data. It is appropriately used for current pricing
when the set of market prices is complete and reliable.

It is worth noting that, just because two models are each both risk
neutral and arbitrage-free, we cannot conclude that they will give the
same price for a particular interest rate derivative. Two arbitrage-free
models will produce the same prices only for the instruments in a subset
common to both sets of input data. The form of the model, and particu-
larly the number of random factors underlying the term structure process,
can make a large difference to valuations of the other instruments.

When the market data are sparse, the behavior of the model becomes
important. For example, the value of a Bermudan or American swaption
depends on the correlations among rates of different maturities. The
swaption market is not liquid, nor are its prices widely disseminated, so
there is no way to estimate a “term structure of correlations” that would
allow a simple arbitrage-free model to interpolate reasonable swaption
prices. In this case, a multi-factor model which captures the nature of cor-
relations among rates of different maturities, including the way that those
correlations are influenced by the shape of the term structure, will per-
form better for pricing swaptions than will a one-factor model. Models
with good statistical fit to historical correlation series are needed for Ber-
mudan or American options on floating-rate notes, caps, and floors for
the same reason. Model behavior is also important for long-dated caps
and floors, where there is a lack of reliable data for estimating the “term
structure of volatilities” beyond the 5-year tenor.

Risk Neutral and Equilibrium
There are a number of sources of “error” in quotations of the market
prices of bonds, so that the discount rates that exactly match a set of
price quotations may contain bond-specific effects, corrupting the pric-
ing of other instruments. These sources, defined as any effects on a
bond’s market price apart from the discount rates applying to all market
instruments, include differences in liquidity, differential tax effects, bid-
ask spreads (the bid-ask spread defines a range of possible market
prices, implying a range of possible discount rates), quotation stickiness,
timeliness of data, the human element of the data collection and report-
ing process, and market imperfections.

Since arbitrage-free models accept all input prices as given, without
reference to their reasonability or comparability to other prices in the
input data, they impound in the pricing model any bond-specific effects.
In contrast, equilibrium models capture the global behavior of the term
structure over time, so security-specific effects are treated in the appropri-
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ate way, as noise. For this reason, risk neutral equilibrium models can
have an advantage over arbitrage-free models in that equilibrium models
are not overly sensitive to outliers. Also, for current pricing (as distin-
guished from horizon pricing, described below), equilibrium models can
be estimated from historical data when current market prices are sparse.
Thus, a risk neutral and equilibrium model can be used for pricing when
the current market prices are unreliable or unavailable.

For most standard instruments, circumstances rarely prevail such that
the current market prices needed for estimating an arbitrage-free model
are not available. However, such circumstances always prevail for horizon
pricing, where the analyst calculates a price for an instrument in some
assumed future state of the market. Since arbitrage-free models require a
full set of market prices as input, arbitrage-free models are useless for hori-
zon pricing, the future prices being unknown. Thus, the horizon prices
obtained under the different values of the state variables in an equilibrium
model provide an analytical capability that arbitrage-free models lack.

USING MODELS OF BORROWER BEHAVIOR WITH A
RISK NEUTRAL INTEREST RATE MODEL

Often, an interest rate model is not enough to determine the value of a
fixed-income security or interest rate derivative. To value mortgage-
backed securities or collateralized mortgage obligations, one also needs a
prepayment model. To value bonds or interest rate derivatives with signif-
icant credit risk, one needs a model of default and recovery. To value
interest-sensitive annuities and insurance liabilities, one needs models of
lapse and other policyholder behaviors. In all of these behavioral models,
the levels of certain interest rates are important explanatory variates,
meaning that, for example, the prepayment speeds in a CMO valuation
system are driven primarily by the interest rate scenarios.

Common practice has been to estimate parameters for prepayment,
default, and lapse models using regression on historical data about inter-
est rates and other variables. Then, in the valuation process, the analyst
uses the interest rates from a set of risk neutral scenarios to derive esti-
mates for the rates of prepayment, default, or lapse along those scenar-
ios. This borrower behavior information is combined with the interest
rates to produce cash flows and, ultimately, prices. Unfortunately, this
practice leads to highly misleading results.

The primary problem here is that the regressions have been estimated
using historical data, reflecting the real probability distributions of bor-
rower behavior, and then used with scenarios from a risk neutral model,
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with an artificial probability distribution. The risk neutral model is not a
process for the short rate; rather, it is a process for the risk adjusted short
rate. Since the real world is risk averse, the risk adjusted short rate usu-
ally has an expected value much higher than the market’s forecast of the
short rate; the extra premium for interest rate risk permits one to value
optionable default-free bonds by reference to the forward rate curve.

The same procedure can be applied to corporate bonds. Corporate
bonds are exposed to default risk in addition to interest rate risk. One
may construct a behavioral model of failure to pay based on historical
data about default rates and recovery, perhaps using bond ratings as
explanatory variates in addition to interest rates. One can then attempt
to compute the present value of a corporate bond by finding the
expected value of the discounted cash flows from the two models in
combination: a risk neutral model of the Treasury curve, and a realistic
model of default behavior as a function of interest rates and other vari-
ables. Because the cash flows of the bond, adjusted for default, will be
less than the cash flows for a default-free bond, the model will price the
corporate bond at a positive spread over the Treasury curve.

This spread will almost certainly be substantially too low in compari-
son to the corporate’s market price. The reason for this is that, just as
investors demand a return premium for interest rate risk, they demand an
additional return for default risk. The application of an econometrically
estimated model of default to pricing has ignored the default risk pre-
mium encapsulated in the prices of corporate bonds. Market practice has
evolved a simple solution to this; one adjusts the default model to fit (sta-
tistically, in the equilibrium case; exactly, in the arbitrage-free case) the
current prices of active corporates in the appropriate rating class. By
using the market prices of active corporates to imbed the default risk pre-
mium in the model, the analyst is really applying the principle of risk neu-
tral valuation to the default rate. The combined model of risk adjusted
interest rates and risk adjusted default rates now discounts using the cor-
porate bond spot rate curve instead of the Treasury spot curve.

The same technique of risk neutralizing a model by embedding
information about risk premia derived from current market prices can
be applied to prepayment models as well. The results of a prepayment
model can be risk adjusted by examining the prices of active mortgage-
backed securities. Unfortunately, one can only guess at the appropriate
expected return premium for insurance policy lapse risk or mortality
risk. Nevertheless, these quantities should be used to “risk neutralize”
these models of behavior to the extent practical. The integrity of risk
neutral valuation depends on risk adjusting all variables modeled; oth-
erwise, model prices will be consistently overstated.
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A final note can be made in this regard about option adjusted spread
(OAS). OAS can be understood in this context as a crude method to risk
adjust the pricing system to reflect all risk factors not explicitly mod-
eled.

Realistic and Arbitrage-Free
A realistic, arbitrage-free model starts by exactly matching the term
structure of interest rates implied by a set of market prices on an initial
date, then evolves that curve into the future according to the realistic
probability measure. This form of a model is useful for producing sce-
narios for evaluation of hedges or portfolio strategies, where it is impor-
tant that the initial curve in each scenario exactly matches current
market prices. The difficulty with such an approach lies in the estima-
tion; realistic, arbitrage-free models are affected by confounding, where
it is impossible to discriminate between model misspecification error
and the term premia. Since the model parameters have been set to match
market prices exactly, without regard to historical behavior, too few
degrees of freedom remain to estimate both the term premia and an
error term. Unless the model perfectly describes the true term structure
process (that is, the time dependent parameters make the residual pric-
ing error zero at all past and future dates, not just on the date of estima-
tion), the term premia cannot be determined. The result is that realistic,
arbitrage-free models are not of practical use.

Realistic and Equilibrium
Since the arbitrage-free form of a realistic model is not available, the
equilibrium form must be used for stress testing, Value at Risk (VAR)
calculations, reserve and asset adequacy testing, and other uses of realis-
tic scenarios.

Some analysts express concern that, because the predicted initial
curve under the equilibrium model does not perfectly match observed
market prices, then the results of scenario testing will be invalid. How-
ever, the use of an equilibrium form does not require that the predic-
tions be used instead of the current market prices as the first point in a
scenario. The scenarios can contain the observed curve at the initial date
and the conditional predictions at future dates. This does not introduce
inconsistency, because the equilibrium model is a statistical model of
term structure behavior; by taking this approach we explicitly recognize
that its predictions will deviate from observed values by some error. In
contrast, the use of an arbitrage-free, realistic model implicitly assumes
that the model used for the term structure process is absolutely correct. 
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Summary of the Four Faces
Exhibit 2.1 summarizes the uses of the four faces of an interest rate model.
Exhibit 2.2 shows the mathematical form of a commonly used interest rate
model, disseminated by Black and Karasinski,4 under each of the modeling
approaches and probability measures. In each equation, u is the natural
logarithm of the short rate.

In the above models, σ is the instantaneous volatility of the short rate
process, κ is the rate of mean reversion, θ is the mean level to which the nat-
ural logarithm of the short rate is reverting, and λ represents the term pre-
mium demanded by the market for holding bonds of longer maturity. The
value of the state variable u at the time of estimation is represented by u0.

The realistic model forms can be distinguished from the risk neutral
forms by the presence of the term premium function λ. The difference
between the arbitrage-free forms and the equilibrium forms can be discerned
in that the parameters of the arbitrage-free forms are functions of time.

EXHIBIT 2.1  When to Use Each of the Model Types

Model Classification Risk Neutral Realistic

Arbitrage-free • Current pricing, where 
input data (market prices) 
are reliable

• Unusable, since term pre-
mium cannot be reliably 
estimated

Equilibrium • Current pricing, where 
inputs (market prices) are 
unreliable or unavailable

• Horizon pricing

• Stress testing
• Reserve and asset ade-

quacy testing

EXHIBIT 2.2  Four Forms of the Black-Karasinski Model

Model
Classification

Risk
Neutral Realistic

Arbitrage-
free

du = κ(t) (θ(t) − u) dt + σ(t) dz du = κ(t) (θ(t) − λ(u,t) − u) dt + σ(t) dz
• u0 and θ(t) matched to 

bond prices
• κ(t) and σ(t) matched to 

cap or option prices

• u0 and θ(t) matched to bond prices
• κ(t) and σ(t) matched to cap or 

option prices
• λ(u,t) cannot be reliably estimated

Equilibrium du = κ(θ − u) dt + σ dz du = κ(θ - λ(u) - u) dt + σ dz
• u0 statistically fit to bond 

prices
• u0 statistically fit to bond prices

• κ, θ, σ historically esti-
mated

• κ, θ, σ, λ(u) historically estimated

4 Fischer Black and Piotr Karasinski, “Bond and Option Pricing when Short Rates
are Lognormal,” Financial Analysts Journal (July–August 1991), pp. 52–59.
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nterest rates are commonly modeled using stochastic differential equa-
tions (SDEs). One-factor models use an SDE to represent the short rate

and two-factor models use an SDE for both the short rate and the long
rate. The SDEs used to model interest rates must capture some of the
market properties of interest rates such as mean reversion and/or a vola-
tility that depends on the level of interest rates. There are two distinct
approaches used to implement the SDEs into a term structure model:
equilibrium and no arbitrage. Each can be used to value bonds and
interest rate contingent claims. Both approaches start with the same
SDEs but apply the SDE under a different framework to price securities.

I
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Equilibrium models such as those developed by Vasicek ,1 Cox,
Ingersoll, and Ross,2 Longstaff,3 Longstaff and Schwartz,4 and Brennan
and Schwartz5 all start with an SDE model and develop pricing mecha-
nisms for bonds under an equilibrium framework. The actual implemen-
tation may vary depending on the model. Vasicek and CIR develop
analytic pricing expressions while Backus, Foresi, and Telmer6 present
econometric and recursive approaches to implement the equilibrium
models. Brennan and Schwartz use a finite difference scheme that
approximates a partial differential equation.

No arbitrage models such as Black and Karasinski ,7 Black, Derman,
and Toy,8 Ho and Lee,9 Heath, Jarrow, and Morton,10 and Hull and
White11 begin with the same or similar SDE models as the equilibrium
approach but use market prices to generate an interest rate lattice. The
lattice represents the short rate in such a way as to ensure there is a no
arbitrage relationship between the market and the model. The numerical

1 O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of
Financial Economics (1977), pp. 177–188.
2 J. Cox, J. Ingersoll, and S. Ross, “A Theory of the Term Structure of Interest
Rates,” Econometrica (1985), pp. 385–408.
3 F. Longstaff, “A Non-linear General Equilibrium Model of the Term Structure of
Interest Rates,” Journal of Financial Economics (1989), 23, pp. 195–224 and “Mul-
tiple Equilibria and Term Structure Models,” Journal of Financial Economics
(1992), pp. 333–344.
4 F. Longstaff and E. Schwartz, “Interest Rate Volatility and the Term Structure: A
Two-Factor General Equilibrium Model,” Journal of Finance (1992), pp. 1259–1282.
5 M. Brennan and E. Schwartz, “A Continuous Time Approach to the Pricing of
Bonds,” Journal of Banking and Finance (1979), pp. 133–155, and, “An Equilibri-
um Model of Bond Pricing and a Test of Market Efficiency,” Journal of Financial
and Quantitative Analysis (1982), pp. 301–329.
6 D. Backus, S. Foresi, and C. Telmer, “Affine Term Structure Models and the For-
ward Premium Anomaly,” Journal of Finance (2001), pp. 279–304.
7 F. Black and P. Karasinski, “Bond and Option Pricing when Short Rates are Log-
normal,” Financial Analyst Journal (July–August 1991), pp. 52–59.
8 F. Black, E. Derman, and W. Toy, “A One Factor Model of Interest Rates and Its
Application to the Treasury Bond Options,” Financial Analyst Journal (January–
February 1990), pp. 33–39.
9 T. Ho and S. Lee, “Term Structure Movements and Pricing Interest Rate Contin-
gent Claims,” Journal of Finance (1986), pp. 1011–1029.
10 D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of
Interest Rates: A New Methodology,” Econometrica (1992), pp. 77–105.
11 J. Hull and A. White, “Pricing Interest Rate Derivative Securities,” Review of Fi-
nancial Studies (1990), 3, pp. 573–592, and, “One Factor Interest Rate Models and
the Valuation of Interest Rate Derivative Securities,” Journal of Financial and Quan-
titative Analysis (1993), pp. 235–254.
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approach used to generate the lattice will depend on the SDE model(s)
being used to represent interest rates. 

No arbitrage models are the preferred framework to value interest
rate derivatives. This is because they minimally ensure that the market
prices for bonds are exact. Equilibrium models will not price bonds
exactly and this can have tremendous effects on the corresponding con-
tingent claims. No arbitrage lattices also allow for a systematic valua-
tion approach to almost all interest rate securities.

Three general SDE functional forms are considered in this work. The
first is the Hull-White (HW) model. The HW model is a more general
version of the Ho and Lee (HL)12 approach except that it allows for
mean reversion. Implementing the HW in a binomial framework removes
a degree of freedom and in this case the HW model collapses to the HL
model if a constant time step is retained. The second model we consider
is the Black-Karasinski (BK) model. The BK model is a more general
form of the Kalotay, Williams, and Fabozzi (KWF) model.13 The BK
model (like the HW model) in the binomial setting does not have enough
degrees of freedom to be properly modeled and so the time step must be
allowed to vary. The third is the Black, Derman, and Toy model. 

We implement the HW and BK trinomial models using the Hull and
White approach. Within the trinomial setting the time step remains con-
stant and mean reversion can be explicitly incorporated. We discuss the
SDEs, the properties of the SDEs, the numerical solutions to the SDEs,
and the binomial and trinomial interest rate lattices for these models. 

The focus of our presentation is on the end user and developer of
interest rate models. We will highlight some significant differences
across models. Most of these are due to the different distributions that
underlie the models. This is done to emphasize the need to calibrate all
models to the market prior to their use. By calibrating the models to the
market we reduce the effects of the distributional differences and ensure
a higher level of consistency in the metrics produced by the models. 

The outline of this chapter is as follows. In the next section we
present the SDEs and some of their mathematical properties. We also
use the mathematics to highlight properties of the short rate. We then
develop the methodology used to implement our approach in both the
binomial and trinomial frameworks. A comparison of some numerical
results across the different models including some interest rate risk and
valuation metrics is then presented.

12 T. Ho and S. Lee, “Term Structure Movements and Pricing Interest Rate Contin-
gent Claims.”
13 A. Kalotay, G. Williams, and F.J. Fabozzi, “A Model for the Valuation of Bonds
and Embedded Options,” Financial Analyst Journal (May–June 1993), pp. 35–46.
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THE GENERAL MODELS FOR THE SHORT RATE

The models considered in this chapter take the form of the following
one-factor SDE:

(1)

where f and g are suitably chosen functions, 

 

θ is determined by the mar-
ket, and 

 

ρ can be chosen by the user of the model or dictated by the
market. We will show that 

 

θ is the drift of the short rate and 

 

ρ is the ten-
dency to an equilibrium short rate. The term 

 

σ is the local volatility of
the short rate. The term  arises from a normally distributed
Wiener process, since 

 

ε ∼ N(0,1), where N(0,1) is the normal distribu-
tion with mean 0 and standard deviation of 1. This means that the term

 

σ(r(t),t)dz has an average or expected value of 0.
Equation (1) has two components. The first component is the expected

or average change in rates over a small period of time, dt. This is the com-
ponent where certain characteristics of interest rates, such as mean rever-
sion, are incorporated. The second component is the unknown or the risk
term since it contains the random term. This term dictates the distribution
characteristics of interest rates. Depending on the model, interest rates are
either normally or lognormally distributed.

The Ho-Lee Model
In the HL model or process f(r) = r, g(r) = 0, and 

 

ρ = 0 in equation (1).
The HL process is, therefore, given by

dr = 

 

θdt + 

 

σdz (2)

Since z is a normally distributed Wiener process, we say the HL process
is a normal process for the short rate. The solution to equation (2),
assuming r(0) = r0 is given by

(3a)

where the integral involving 

 

σ is a stochastic integral. If 

 

θ is constant
this can be expressed as

                                                                          (3b)

Equation (3b) shows that the HL process models an interest rate that
can change proportionally with time t through the constant of propor-

df r t( )( ) θ t( ) ρ t( )g r t( )( )+[ ]dt σ r t( ) t,( )dz+=

dz ε dt=

r t( ) r0 θ sd
0

t

∫ σ zd
0

t

∫+ +=

r t( ) r0 θt σ zd
0

t

∫+ +=
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tionality, θ, and a random disturbance determined by σ. That is, the
larger θ is in magnitude the larger the average change in the short rate
over time. This is why θ is called the “drift in the short rate.” Also, the
smaller θ is the larger the influence of the random disturbance. The short
rate can be negative in the HL process. This is a shortcoming of the
model. Hull shows that θ is related to the slope of the term structure.14

To obtain a numerical approximation for equation (2) we approxi-
mate equation (2) by using equations (3a) and (3b). Letting tk = kτ and
rk ≈ r(kτ) gives

or

(4)

where ∆zk is a numerical (discrete) approximation to dz. Since
, we can further approximate equation (4) by

(5)

where εk is a random number given by a normal distribution N(0,1).
Equation (5) is the form of the expression that is used for rk+1 to build
the HL binomial tree.

We first consider the solution to equation (5) without the stochastic
term when θ is constant. Equation (5) under these requirements is 

(6a)

and the solution is given by

                                                                                           (6b)

where c and δ are constants. In particular, c = r0 and δ = θτ. It is seen
from this last equation that the mean short rate in the HL process
increases or decreases at a constant rate θ over time depending on the
sign of θ. As a matter of fact, equation (6b) shows that the short rate
grows without bound if θ > 0 and decreases without bound (i.e.
becomes very negative) if θ < 0.

14 J. Hull, Options, Futures, and Other Derivatives, Fourth Edition (Saddle River,
NJ: Prentice Hall, 2000).

rk 1+ rk– θkτ σk zk∆+=

rk 1+ rk θ+ kτ σk zk∆+=

dz ε dt=

rk 1+ rk θ+ kτ σkεk τ+=

rk 1+ rk τθ+=

rk c kδ+=
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The Hull-White Model
In the HW model or process f(r) = r, g(r) = r, and ρ = −φ. Therefore, the
stochastic process for the HW model for the short rate is

dr = (θ − φr)dt + σdz (7)

The short rate process in the HW model is seen to be normal as in the
HL process. We consider the case where the parameters θ and φ are con-
stant over time. Note that if φ = 0 the HL process reduces to the HW
process. (The HW process will, therefore, be similar to the HL process if
φ is close to 0.) We will see that the introduction of φ in the HW model is
an attempt to incorporate mean reversion and to correct for the uncon-
trolled growth (or decline) in the HL model shown later in this chapter. 

Eliminating the stochastic term in equation (7) gives the ordinary
differential equation

dr = (θ − φr)dt (8)

whose solution is given by

(9)

where

(10)

If φ > 0 we see from equation (9) that

Therefore, for positive mean reversion (φ > 0) the HW process will con-
verge to the short rate, µ. Due to this, the term µ is called the “target”
or “long run mean rate.” For negative mean reversion (φ < 0), the short
rate grows exponentially over time.

Factoring φ in equation (7) leads to

dr = φ(µ − r)dt + σdz

and eliminating the stocastic term leads to 

r t( ) θ
φ
--- ce φt–+=

c r0
θ
φ
---–=

r t( )
t ∞→
lim

θ
φ
--- µ= =
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dr = φ(µ − r)dt

We see that if r > µ then dr is negative and r will decrease and if r < µ
then dr is positive and r will increase. That is, r will approach the target
rate µ. The larger φ is the faster this approach to the target rate µ. This
is why φ is called the “mean reversion” or “mean reversion rate.” It reg-
ulates how fast the target rate is reached. However, it does not eliminate
the negative rates that can occur in the HL process.

Since the target rate µ is equal to θ/φ, we can solve for the drift, θ, or
the mean reversion, φ. That is, 

θ = µφ (11)

or

(12)

It is seen from equations (11) and (12) that there is a strong rela-
tionship between the drift and mean reversion that can be used to reach
any desired target rate. How large the mean reversion should be is an
important financial question. Equations (11) and (12) can be used to set
target rates. Equations (9) and (10) allow one to determine how long it
takes to reach the target rate. 

Approximating equation (7) gives us

(13)

If θ and φ are constant and we eliminate the stochastic term then the
solution to equation (13) has the form

To determine α, β, and γ we substitute this form for rk into equation
(13) under these conditions and obtain that β = (1 − φτ), γ = θ/φ = µ, and
α = r0 − µ. Therefore,

(14)

Note that if 0 < φτ < 2 then −1 < 1 − φτ < 1 and

φ θ
µ
---=

rk 1+ rk θk φ– krk( )τ σkεk τ+ +=

rk αβk γ+=

rk α 1 φτ–( )k θ
φ
---+=
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which is the same result we obtained from equation (9) for the HW SDE.
The condition 0 < φτ < 2 is easily maintained in modeling the short rate. 

The Kalotay-Williams-Fabozzi Model 
For the KWF process f(r) = ln(r), g(r) = 0, and ρ = 0 in equation (1). This
leads to the differential process

d ln(r) = θdt + σdz (15a)

This model is directly analogous to the HL model. If u = ln r then we
obtain the HL process (equation(2)) for u

                                                                                 (15b)

Because u follows a normal process, ln(r) follows a normal process
and so r follows a lognormal process. Since u follows the same process as
the HL and HW models, u can become negative, but u = ln(r) and r = eu

ensuring r is always positive. Therefore, the KWF model eliminates the
problems of negative short rates that occurred in the HL and HW models.

Eliminating the stochastic term in equation (15) we obtain

d ln(r) = θ(t)dt

and

du = θ(t)dt

From equation (3a) we have

since u(0) = ln r(0) = ln r0,

Taking the exponential of both sides gives us

rkk ∞→
lim

θ
φ
--- µ= =

du θdt σdz+=

lnr t( ) u u 0( ) θ s( ) sd
0

t

∫+= =

lnr t( ) lnr 0( ) θ s( ) sd
0

t

∫+=
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(16)

showing that r(t) > 0 since r(0) > 0. Therefore, if θ(t) > 0 the short rate
in the KWF process grows without bound and if θ(t) < 0 the short rate
in the KWF process decays to 0. 

From equation (5) for the HL process the discrete approximation to
equation (15b) is

(17a)

and the exponential of this equation gives the discrete approximation to
equation (15a):

                                                                         (17b)

From equation (17b) and equation (16) we see that the numerical
approximation to equation (15a) has similar properties to the solution
to the HL SDE. That is, if θ(t) > 0 the short rate grows without bound
and if θ(t) < 0 the short rate decays to 0. 

The Black-Karasinski Model 
In the BK model we set f(r) = ln r, ρ = −φ, and g(r) = ln r in equation (1)
to obtain the SDE

d ln r = (θ − φ ln r)dt + σdz (18a)

We now work with equation (18a) using equation (7) for the HW pro-
cess in a manner similar to how we used results from the HL process to
develop the KWF process. If we let u = ln r in equation (18a) we obtain

                                     du = (θ − φu)dt + σdz (18b)

which is the HW process for u. Again, note that u has all the same prop-
erties as r in the HW model. Since r = eu in the BK process, r > 0. This is
the advantage the BK model has over the HW model. Therefore, we see
that the BK process is an extension of the KWF process as the HW pro-
cess is an extension of the HL process. The main difference is the BK is a
lognormal extension of the lognormal KWF process. As a matter of fact,
if φ = 0 the BK process reduces to the KWF process. Black and Karasinski
introduced φ to control the growth of the short rate in the KWF process.

r t( ) r0e
θ s( ) sd

0

t∫=

uk 1+ uk θkτ σkεk τ+ +=

rk 1+ rke
θkτ σkεk τ+

=
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From equation (9) we have

and after taking exponentials

(19)

For φ < 0 we see that r grows without bound and that for φ > 0

The target rate for the BK process is the exponential of the target rate
for the HW process.

As in the HW process, from equation (19) (or equations (9) and
(10)) we see that 

(20)

in the BK process. The closer the initial rate is to the target rate the
faster the BK process converges to the target rate. From equations (19)
and (20) we see that if the initial short rate is the target rate then r(t) = µ
for all t in the BK process which is analogous to the HW process. 

Given the target rate µ we can solve for the drift or the mean rever-
sion similarly to equations (11) and (12) in the HW model. We have

θ = φ ln µ (21)

and

(22)

We discretize u = ln r in equation (18b) just as we did for the HW SDEs
and then let r = eu. This is analogous to how we used the HL discrete
process to get the KWF discrete process. The equations corresponding
to equation (13) are

u t( ) θ
φ
--- ce φt–+=

r t( ) eu t( ) e
θ
φ
--- ce φt–+

= =

r t( )
t ∞→
lim e

θ
φ
---

µ= =

c lnr0
θ
φ
---–=

φ θ
lnµ
--------=
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(23a)

or after taking the exponential of both sides of equation (23a)

                                                            (23b)

For constant θ and φ (similarly to equation (14)), the solution to equa-
tion (23b) after eliminating the stochastic term is 

(24)

Note from equation (24) that 

for 0 < φτ < 2. This is similar to the result we obtained from equation
(14) for the HW SDEs. 

The Black-Derman-Toy Model
The Black-Derman-Toy (BDT) model is a lognormal model with mean
reversion, but the mean reversion is endogenous to the model. The mean
reversion in the BDT model is determined by market conditions.

The equation describing the interest rate dynamics in the BDT model
has f(r) = ln r and g(r) = ln r in equation (1) as in the BK model. There-
fore, the short rate in the BDT model follows the lognormal process

d ln r + [θ(t) + ρ(t) ln r]dt + σ(t)dz

However, in the BDT model  giving us

(25a)

Making the substitution u = ln r leads to

                                                        (25b)

uk 1+ uk θk φ– kuk( )τ σkεk τ+ +=

rk 1+ rke
θk ϕklnrk–( )τ σkεk τ+

=

rk e
α 1 φr–( )k θ

φ
---+

=

rkk ∞→
lim e

θ
φ--- µ= =

ρ t( ) d
dt
-----lnσ t( ) σ' t( )

σ t( )
-----------= =

dlnr θ t( ) σ' t( )
σ t( )
-----------lnr+ 

  dt σ t( )dz+=

du θ t( ) σ' t( )
σ t( )
-----------u+ 

  dt σ t( )dz+=
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Notice the similarity in equations (25) and the equations (18) of the
BK model. We expect

to behave similarly to −φ(t) in the BK model. This expression should give
mean reversion in the short rate when it is negative. That is, we expect
that if  (implying σ(t) is decreasing) then the BDT model will give
mean reversion. On the other hand, when  (implying σ(t) is
increasing) the short rates in the BDT model will grow with no mean
reversion. If σ(t) is constant in the BDT model, then  so ρ = 0
and equation (25a) becomes the KWF model (equation (15)). Therefore,
we will only study the case of varying local volatility for the BDT model.

Eliminating the stochastic term in equation (25) leads to

(26)

Solving this equation for u as we did in the KF and BK models, gives us

or

or

(27)

Note that the BDT mean short rate depends on the local volatility. If
the local volatility has a decreasing structure, then the first exponential
term in equation (27) has a negative exponent and will cause a decrease
in the short rate and vice versa if the local volatility has an increasing
structure. It is important to note that mean reversion in the BDT model
comes from the local volatility structure (i.e., it is endogenous). 

σ' t( )
σ t( )
-----------

σ' t( ) 0<
σ' t( ) 0>

σ' t( ) 0=

dlnr du θ t( ) σ' t( )
σ t( )
-----------u+ 

  dt θ t( ) σ' t( )
σ t( )
-----------lnr+ 

  dt= = =

u t( ) u 0( )
σ 0( )
------------ θ s( )

σ s( )
----------- sd

0

t

∫+ σ t( )=

r t( ) e

log r0( )
σ0

------------------
θ s( )
σ s( )
----------- sd

0

t

∫+
 
 
 

σ t( )

e

σ t( )log r0( )
σ0

-----------------------------

e
σ t( ) θ s( )

σ s( )
----------- sd

0

t

∫
= =

r t( ) r0e

σ t( ) σ0–
σ0

----------------------- log r0( )

e
σ t( ) θ s( )

σ s( )
----------- sd

0

t

∫
=
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We now consider numerical solutions to the BDT process. To dis-
cretize equation (25a) for the BDT model we start off again by approxi-
mating du in equation (25b) by u to get 

(28)

The exponential of equation (28) gives us

(29)

where

We approximate this term by

That is, we approximate  by a discrete approximation to the deriva-
tive. We now have

or

(30)

If the random term is 0 equation (30) becomes

(31)

uk 1+ uk θk ρkuk+( )τ σkεk τ+ +=

rk 1+ rke
θk ρklnrk+( )τ σkεk τ+[ ]

=

ρk

σk'

σk
-------=

σk 1+ σk–

τ
--------------------------

σk
--------------------------

σk'

uk 1+ uk θk

σk 1+ σk–

τ
--------------------------

σk
--------------------------uk+

 
 
 
 

τ σkεk τ+ +=

uk 1+

σk 1+

σk
-------------uk θkτ σkεk τ+ +=

uk 1+

σk 1+

σk
-------------uk θkτ+=
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In particular, if

where α is a constant then

The exponential of this gives

This equation is interesting because ln r0 < 0. If α > 1 then the first
exponential term decreases. When θ < 0 the second exponential term
also decreases and the BDT short rate should approach a target rate.
Conversely, when θ > 0 the second exponential term increases. In this
case we can approach a target rate or the second term can dominate. If
α < 1 then a similar situation arises. Therefore, in order to get meaning-
ful numerical results for the BDT short rates we strongly recommend
that α be close to 1 and that the term structure of spot rates not have
too large a slope.

The analysis of the equations without the stochastic term presented
in this section is important. Recall that the characteristics of the random
term are such that average influence of this term will be much smaller
than the mean term in the SDEs. Consequently, the properties presented
within this section will also hold under more general circumstances. The
discrete approximations we developed for the models will be used to
build the binomial and trinomial models in the next section. Note that
we are highlighting the difference across the models and do not cali-
brate the models to market information.

For numerical reasons, the BK and HW models are best imple-
mented in the trinomial framework. The HL, KWF, and BDT models are
more easily implemented in the binomial framework.15 We will discuss

15 See G.W. Buetow and J. Sochacki, Binomial Interest Rate Models, AIMR Research
Foundation, 2001.

σk 1+

σk
------------- α=

uk αku0 αjθk j– 1– τ
j 0=

k 1–

∑+=

rk r0e
αk 1–( )lnr0e

αjθk j– 1– τ
j 0=

k 1–

∑
=
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the specifics of this in the next section. For the trinomial framework we
use the approach of Hull and White.16

BINOMIAL AND TRINOMIAL SOLUTIONS TO THE
STOCHASTIC DIFFERENTIAL EQUATIONS

In this section we present the binomial and trinomial lattice models that
are obtained for the discretized versions of SDEs given in the previous
section. The binomial method models the short rate in a geometrically
analogous manner as equities.17 The up move has a probability q and so
the down move has a probability of 1 − q. We use q = 0.5 within the
framework of risk neutrality. This binomial process of two possible
moves for the short rate in the next time period is then continued at
each time to produce a binomial lattice of interest rates. 

The trinomial model is similar in spirit to the binomial except there
are three possible states emanating from each node. From each point in
time we call the upward-most move the “up move,” the downward-most
move the “down move,” and the center move the “middle move.” The
probabilities for an up move, middle move and down move are given by
q1, q2, and q3 with q1 + q2 + q3 = 1.

Interest rate lattices should possess the property of recombination for
them to be computationally tractable. That is, from any given node in the
binomial model we will require an up move followed by a down move to
get to the same point as a down move followed by an up move. This
ensures that the number of nodes in the binomial lattice increase by only
one at each time step. In the trinomial case recombination is a little more
complicated. From any node in the trinomial lattice an up move followed
by a down move will get to the same node as two successive middle moves
and as a down move followed by an up move. This ensures that the number
of nodes in the trinomial lattice increase by only two at each time step.

Exhibit 3.1 represents a binomial short rate lattice and Exhibit 3.2
represents a trinomial short rate lattice. The notation rj,k is used to
denote the short rate value at level j at time tk. In the binomial lattice, an
up move from rj,k is given by rj,k+1 and a down move is given by rj+1,k+1.
At time tk there are k + 1 possible values for the short rate in the bino-

16 J. Hull and A. White, “Pricing Interest Rate Derivative Securities,” “One Factor
Interest Rate Models and the Valuation of Interest Rate Derivative Securities,” and
“Numerical Procedures for Implementing Term Structure Models I: Single-Factor
Models,” Journal of Derivatives (Fall 1994), pp. 7–16.
17 See J. Cox, S. Ross, and M. Rubinstein, “Option Pricing a Simplified Approach,”
Journal of Financial Economics (1979), pp. 229–264.
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mial lattice. That is, j ranges from 1 to k + 1. In the trinomial model, an
up move, middle move, and down move from the short rate rj,k is given
by rj,k+1, rj+1,k+1, and rj+2,k+1, respectively. In the trinomial model there
are 2k + 1 possible values for the short rate at time tk. That is, j ranges
from 1 to 2k + 1. The short rates forming the top of the lattice will be
called the up state for the short rates and the short rates forming the
bottom of the lattice will be called the down state for the short rates.
For the binomial and trinomial model, the up state is the set of short
rates r1,k for 0 ≤ k ≤ n and the down state for the binomial case is the set
of short rates rk,k for 0 ≤ k ≤ n; within the trinomial tree the down state
is the set of short rates r2k+1,k for 0 ≤ k ≤ n.

Hull-White Binomial Lattice
Since the HW model is a more general version of the HL model we
present the binomial version only for the HW. In the HW binomial lat-
tice the expressions for rj,k that correspond to equation (13) are

(32)

EXHIBIT 3.1  Binomial Lattice

r1,3

r1,2

r1,1 r2,3

r1,0 r2,2

r2,1 r3,3

r3,2

r4,3

t0 t1 t2 t3

EXHIBIT 3.2  Trinomial Lattice

r1,4

r1,2 r2,4

r1,1 r2,2 r3,4

r1,0 r2,1 r3,2 r4,4

r3,1 r4,2 r5,4

r5,2 r6,4

r7,4

t0 t1 t2 t3

rj k 1+, rj k, θkτk φkrj k, τk– σk τk+ +=
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for an up move and 

(33)

for a down move. (We are using τk for ∆tk.)
These equations suggest that in order to have recombination the fol-

lowing must be true:

(34)

Equation (34) illustrates that if you want a constant time step when
the local volatility is constant, the mean reversion must be 0. The
recombination requirement has put the stringent condition on the HW
binomial lattice that the mean reversion is determined by the local vola-
tility. To avoid this problem within the binomial framework we must
allow the time step to vary with k in equations (32) through (34). As a
matter of fact, for a constant time step,

(35)

which can also be solved for σk+1 to give

(36)

Equation (36) shows that the mean reversion can be used to match
any given local volatility for a constant time step. If the local volatility
is decreasing the mean reversion will be positive, and if the local volatil-
ity is increasing the mean reversion will be negative. We point out that if
a variable time step is used, one does not have to have mean reversion
match local volatility. 

Black-Karasinski Binomial Lattice
Since the BK model is a more general form of the KWF model, we only
present the binomial version for the BK model. The expressions corre-

rj 1+ k 1+, rj k, θkτk φkrj k, τk σk– τk–+=

τk 1+ τk

4
σk

σk 1+
------------- 

  2

1 1 4
σk

σk 1+
------------- 

  2
τkφk 1+++

2
------------------------------------------------------------------------------=

φk 1+

σk σk 1+–

σkτ
--------------------------=

σk 1+ σk 1 φk 1+ τ–( )=
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sponding to equations (32) and (33) of the HW model and from equa-
tion (23b) are

(37)

for an up move and

(38)

for a down move. 
Using equations (37) and (38) we can develop equations for the BK

binomial lattice that are identical to equations (34) and (36) for the HW
binomial lattice. This should be expected since the BK SDE is just a log-
normal version of the HW SDE. A crucial point here is that we can use
the HW and BK models to match local volatility and to compare results.
It is important to point out that the HW and BK binomial lattices have a
variable time step. If a variable time step is used then interpolation is
required to give the short rates at the fixed time steps. We do not offer
this framework. Instead we present the HW and the BK models in the
trinomial framework. 

Within the binomial framework, the HW and BK models only approx-
imate the distributional properties of their respective SDE’s. The accuracy
of the approximation is a function of the mean reversion. As the mean
reversion increases, the accuracy decreases. Note that since the HL and
KWF models have a zero mean reversion the distributional characteristics
of their SDE’s are perfectly matched within the binomial framework. This
is the reason for using the trinomial method for the HW and BK models.

The Trinomial Lattices
A better way to keep a constant time step and to match the appropriate
distributional properties is to use a trinomial lattice instead of a bino-
mial lattice. If we use a trinomial lattice for the HW SDEs, then from
equation (13) we use

(39a)

for an up move, 

                                             (39b)

rj k 1+, rj k, e
θk φkln rj k,( )–( )τk σk τk+

=

rj 1+ k 1+, rj k, e
θk φkln rj k,( )–( )τk σk– τk=

rj k 1+, rj k, θkτ φkrj k, τ–+ αkσk τ+=

rj 2+ k 1+, rj k, θkτ φkrj k, τ– αkσk τ–+=
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for a down move, and

                                                            (39c)

for a middle move. Similarly, if we use a trinomial lattice for the BK
SDEs then from equation (23b) we use

(40a)

for an up move,

                                                 (40b)

for a down move, and 

                                                             (40c)

for a middle move. 
Note that a constant time step is now used. The expression αk is

used to guarantee recombination. The probabilities of an up, middle,
and down move are chosen to give the correct variance.

The No Arbitrage Equations
The procedure to generate the no arbitrage equations for the binomial
and trinomial lattices is outlined in the appendix. The no arbitrage poly-
nomial for the short rates in the binomial tree is given by,

(41)

where, for i ≥ 3 

a2,i = b1,i−1, aj,i = bj−2,i−1 + bj−1,i−1, for j = 3, ..., i, ai+1,j = bi−1,i−1, and
c1,i = Pi+1a1,i, cj+1,i = qi-j(1 − q)j-1aj+1,i for j = 1, ..., i.

rj 1+ k 1+, rj k, θkτ φkrj k, τ–+=

rj k 1+, rj k, e
θk φkln rj k,( )–( )τ αkσk τ+

=

rj 2+ k 1+, rj k, e
θk φkln rj k,( )–( )τ αkσk τ–

=

rj 1+ k 1+, rj k, e
θk φkln rj k,( )–( )τ

=

fi c1 i, 1 rj i, τ+( )
j 1=

i

∏ cm 1+ i,
m 1=

i

∑ 1 rn i, τ+( )
n 1=n m≠

i

∏+=

a1 i, 1 rm n, τ+( )
m 1=

i

∏
n 0=

i 1–

∏=
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We solve equation (41) for θi by setting fi = 0. We then use θi to compute
rj,i for j = 1, ..., i at the ith period. The bisection method will converge
quickly because there is only one root between −1 and 1 for the HW bino-
mial lattice and one root between 0 and 1 for the BK binomial lattice.18

After generating the new rates we let

For the variable time step, τi we replace the terms (1 + rj,iτ) by
 and the terms (1 + rn,iτ) by

in equation (41). 
Similarly, the no arbitrage polynomial for the trinomial trees is

given by,

(42)

where we first let

a2,i = q1b1,i−1a2,i−1, a3,i = q2b1,i−1a2,i−1 + q1b2,i−1a3,i−1

aj,i = q3bj−3,i−1aj−2,i−1 + q2bj−2,i−1aj−1 + q1bj−1,i−1aj,i−1, for j = 4, ..., 2i − 2,

a2i-1,i = q3b2i−4,i-1a2i−3,i−1 + q2b2i−3,i−1a2i−2,i−1, a2i,i = q3b2i−3,i−1a2i−2,i−1

and then let

c1,i = Pi+1a1,i, cj,i = aj,i for j = 2, ..., 2i + 1

18 See Richard L. Burden and Douglas Faires, Numerical Methods, Second Edition
(Pacific Grove, CA: Brooks/Cole Publishing Company, 1998).

bj i, aj 1+ i, 1 rm i, τ+( )
m 1=m j≠

i

∏=

1 rj i, τ+( )
τi τ⁄

1 rn i, τ+( )
τi τ⁄

fi c1 i, 1 rj i, τ+( )
j 1=

2i 1–

∏ cm 1+ i,
m 1=

2i 1–

∑ 1 rn i, τ+( )
n 1=n m≠

2i 1–

∏+=

a1 i, 1 rj i, τ+( )
j 1=

2i 3–

∏=
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We solve equation (42) for θi by setting fi = 0 using the bisection
method. From this the short rates for either the HW or BK trinomial lat-
tices are determined at step i. We then let

for n = 1, ..., 2i − 1 and then repeat the process. In these derivations Pi =
1/(1 + Riτ)i is the discount factor given by the spot rates (zero curve).

The Hull and White Lattice
We now briefly outline the Hull and White methodology for generating
HW and BK trinomial lattices.19 The Hull and White methodology uses

(43)

for the HW trinomial lattice short rates and

(44)

for the BK trinomial lattice short rates. 
They choose  to minimize numerical error and intro-

duce the mean reversion through the probabilities q1, q2, and q3. Specif-
ically, they use 

and

19 For complete details we refer the reader to Hull and White, “Numerical Proce-
dures for Implementing Term Structure Models I: Single-Factor Models.” 

bn 1 rj i, τ+( )
j 1=
j n≠

2i 1–

∏=

rj k, x jk( ) ρ∆+=

rj k, e
x jk( ) ρ∆+[ ]

=

ρ∆ σ 3τ=

q1
1
6
---

jk( )2φ2τ2 jk( )φτ+

2
----------------------------------------------+=

q2
2
3
--- jk( )2φ2τ2–=

q3
1
6
---

jk( )2φ2τ2 jk( )– φτ
2

-------------------------------------------+=
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for the up, middle, and down moves at rj,k, respectively, since this
matches the expected change and variance of the short rate over the next
time period. However, as they point out, these probabilities must remain
positive. In order to do this they “prune” the upper and lower branches
of their lattice at the level j that keeps these probabilities positive. Since
q2 is the only one that can become negative they require the following, 

At this maximum value of j, Hull and White apply a different branching
procedure with different probabilities in order to “prune” the lattice.
However, as they point out, using this value of j can lead to computa-
tional problems so they actually use the first j satisfying

This leads to a reduction in the spread of the rates. 

COMPARATIVE STUDY OF THE NUMERICAL SOLUTIONS

In this section a comparison between the methodologies is presented. In
particular, we look at the effects of mean reversion and local volatility
on the drift and the spread in the short rates. We present numerical
results for the term structures, volatility, and mean reversion in Exhibit
3.3. The exhibit also includes the bond information for use later. 

Original Term Structure with No Mean Reversion
We first consider the original term structure with no mean reversion for
the HL and HW models. In Exhibit 3.4 we present the binomial tree for
the HL model and the trinomial for the HW model using the HW trino-
mial methodology. We use a 10% volatility throughout the trees. We see
that the spread in the short rates increases over time in the models as
expected. We also see that the HL model can give negative short rates. 

In Exhibit 3.5 we present the binomial tree for the KWF model, the
trinomial for the BK model using the HW trinomial methodology, and the
BDT binomial model. The KWF and BK models use the 10% volatility
throughout the tree and no mean reversion. Note the volatile nature of
the BDT model. This is due to the time varying volatility structure and the
way mean reversion is incorporated into the BDT model through this

j
6

3φτ
---------< 0.816

φτ
---------------≈

jk
3 6–

3φτ
---------------- 0.184

φτ
---------------≈>
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decreasing volatility structure. Note that all the short rates are positive
and that the spread in the rates is significantly less than in Exhibit 3.4.

Exhibit 3.6 presents the trinomial lattices for the HW and BK mod-
els using the information in Exhibit 3.3 and a mean reversion of 5%.
The volatility is 10%. Notice the pruning that takes place within the lat-
tice when we have mean reversion. This produces lattices that are signif-
icantly different than those shown in Exhibits 3.4 and 3.5. This is a
peculiarity of the Hull and White methodology. The pruning is a result
of incorporating mean reversion into the model and ensuring that the
distributional characteristics of the SDE’s are retained.

Comparison of the Models Using Common Risk and Value Metrics
Here we contrast the effective duration, effective convexity, and the option-
adjusted spread (OAS) for 10-year callable and putable bonds each with a
one-year delay on the embedded option. The information in Exhibit 3.3 is
used for the analysis. We computed the effective duration for the original
term structures shown in Exhibit 3.3 using a yield change of 25 basis
points. The original term structure is then shifted up and down in a parallel
manner by ±250 basis points and by ±500 basis points, respectively. In
other words, we computed the effective duration at five different term
structure levels using a yield change of 25 basis points. 

EXHIBIT 3.3  Input Information

Original TS Volatility Mean Reversion

6.20% 10.00% 5%
6.16% 10.00%
6.15%   9.00%
6.09%   9.00%
6.02%   8.00%
6.02%   8.00%
6.01%   7.00%
6.01%   7.00%
6.00%   7.00%
6.01%   7.00%

Bond Information for ED, EC, and OAS

Call Price (Regular Callable) $102.50
Put Price (Regular Putable)   $95.00
Annual Coupon ($ per $100)     $6.00
Time Option Starts (years from now) 1
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68 INTEREST RATE AND TERM STRUCTURE MODELING

Exhibit 3.7 presents the effective duration and convexity results for
the two securities for each model. The results are interesting. It is clear
that the normal models do not agree with the lognormal models. Specif-
ically, the normal models do not match the characteristics of the price
yield relationship at extreme interest rate levels.20 Furthermore, each
model gives slightly different results. This is an important finding and
must be appreciated by any user of these models.

Exhibit 3.8 presents the OAS results. We used a market price that is
3% below the model price for the OAS computation. They are consis-
tent with the results in Exhibit 3.7. Note that the normal models pro-
duce OAS values larger than any of the lognormal models. This is due to
the distributional differences and the property of allowing very low and
negative interest rates. Clearly, normal models are not desirable when
evaluating securities with embedded options.21

CONCLUSION

This chapter summarized five different term structure models that
evolve from three general stochastic differential equations. We con-
trasted the salient characteristics across the different models including
the distributional differences. The differences were highlighted both
mathematically and numerically. Without market calibration the models
produce very different results. Both the end user and the developer must
be aware of these properties in order to properly implement and inter-
pret any results from the models. Even with calibration the models will
produce different results due to the reasons presented here. Calibration
reduces the differences across the models but does not eliminate them.
The methods presented here can also be used to calibrate the models.

20 See G.W. Buetow and R. Johnson, “Primer on Effective Duration and Effective
Convexity,” Professional Perspectives on Fixed Income Portfolio Management, Vol-
ume 1, Frank J. Fabozzi (Ed.) (New Hope, PA: Frank J. Fabozzi Associates, 2000)
and Frank J. Fabozzi, G. W. Buetow, and R. Johnson, “Measuring Interest Rate
Risk,” The Handbook of Fixed Income Securities, 6th Edition, Frank J. Fabozzi
(Ed.) (New York: McGraw Hill, 2001) for more details on the behavior of putable
and callable bonds.
21 Details of these phenomena are provided in G.W. Buetow, B. Hanke, and Frank J.
Fabozzi, “The Impact of Different Interest Rate Models on Effective Duration, Ef-
fective Convexity and Option-Adjusted Spreads,” Journal of Fixed Income (Winter
2001), pp. 41–53.
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70 INTEREST RATE AND TERM STRUCTURE MODELING

APPENDIX

In this appendix we outline how to obtain equations (41) and (42). For
equation (41) we use Exhibit 3.1. For equation (42) we use Exhibit 3.2.

We first solve for r1,1 and r2,1 in Exhibit 3.1. Equating the price
from the spot rate term structure with the price from the binomial lat-
tice gives us

(A1)

Substituting in the discount factors pj,1 = 1/(1 + rj,1τ) for j = 1, 2 and
clearing fractions we obtain

P2(1 + r1,0τ)(1 + r1,1τ)(1 + r2,1τ) − q(1 + r2,1τ)
− (1 − q)(1 + r1,1τ) = 0 (A2)

We let r1,0 = R1. This equation can now be solved for θ1.
For the next period in the binomial lattice we have from Exhibit 3.1

that

which reduces to

P3(1 + r1,0τ)(1 + r1,1τ)(1 + r2,1τ)(1 + r1,2τ)(1 + r2,2τ)(1 + r3,2τ)

− q2(1 + r2,1τ)(1 + r2,2τ)(1 + r3,2τ) − q(1 − q)[(1 + r1,1τ) + (1 + r2,1τ)]

(1 + r1,2τ)(1 + r3,2τ) − (1 − q)2(1 + r1,1τ)(1 + r1,2τ)(1 + r2,2τ) = 0 (A3)

We now solve equation (A3) for θ2 using the bisection method. 
From equation (A2) and equation (A3) we can generate the remain-

der of the no arbitrage equations that give the short rates in the bino-
mial lattice. Note that equation (A2) can be written as

c1,1(1 + r1,1τ)(1 + r2,1τ) + c2,1(1 + r2,1τ) + c3,1(1 + r1,1τ) = 0 (A4)

P2
1

1 R2τ+( )2
---------------------------

qp1 1, 1 q–( )p2 1,+

1 r1 0, τ+
-------------------------------------------------= =

P3
1

1 R3τ+( )3
---------------------------

qp1 1, 1 q–( )p2 1,+

1 r1 0, τ+
-------------------------------------------------= =

q
qp1 2, 1 q–( )p2 2,+

1 r1 1, τ+
------------------------------------------------- 

  1 q–( )
qp2 2, 1 q–( )p3 2,+

1 r2 1, τ+
------------------------------------------------- 

 +

1 r1 0, τ+
------------------------------------------------------------------------------------------------------------------------------------------=
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and that equation (A3) can be written as

c1,2(1 + r1,2τ)(1 + r2,2τ)(1 + r3,2τ) + c2,2(1 + r2,2τ)(1 + r3,2τ)
+ c3,2(1 + r1,2τ)(1 + r3,2τ) + c4,2(1 + r1,2τ)(1 + r2,2τ) = 0 (A5)

We now introduce some variables that will help to generate the
coefficients ci,k for the polynomials that determine the interest rates at
time period k. We start by doing it for the polynomials in equations
(A4) and (A5). This is done in two steps. The first step is to notice how
the coefficients are related to the interest rates at the previous time peri-
ods. Note that if we let a1,1 = 1 + r1,0τ, a2,1 = −1, and a3,1 = −1 then c1,1
= P2a1,1, c2,1 = qa2,1, and c3,1 = (1 − q)a3,1 in equation (A4). In order to
generate equation (A5) we first let b1,1 = a2,1(1 + r2,1τ), b2,1 = a3,1(1 +
r1,1τ). We can then generate a1,2 = (1 + r1,0τ)(1 + r1,1τ)(1 + r2,1τ), a2,2 =
b1,1, a3,2 = b1,1 + b2,1, and a4,2 = b2,1. It is now seen that c1,2 = P3a1,2,
c2,2 = q2a2,2, c3,2 = q(1 − q)a3,3, and c4,2 = (1 − q)2a4,2. We now let b1,2
= a3,1(1 + r2,2τ)(1 + r3,2τ), b2,2 = a3,2(1 + r1,2τ)(1 + r3,2τ), and b3,2 = a4,2(1
+ r1,2τ)(1 + r2,2τ) and continue the process to obtain equation (41).

For the trinomial lattice no arbitrage polynomial we first solve for
r1,1, r2,1, and r3,1 in Exhibit 3.2. Equating the price from the spot rate
term structure with the price from the trinomial lattice gives us

which is similar to equation (A1). Proceeding as in the binomial lattice
we find that

P2(1 + r1,0τ)(1 + r1,1τ)(1 + r2,1τ)(1 + r3,1τ) − q1(1 + r2,1τ)(1 + r3,1τ)
− q2(1 + r1,1τ)(1 + r3,1τ) − q3(1 + r1,1τ)(1 + r2,1τ) = 0 (A6)

As in the binomial case, r1,0 = R1 and equation (A6) is solved for θ1
using the bisection method.

For the next period in the trinomial lattice (Exhibit 3.2) gives us

P2
1

1 R2τ+( )2
---------------------------

q1p1 1, q2p2 1, q3p3 1,+ +

1 r1 0, τ+
----------------------------------------------------------------= =

P3
1

1 R3τ+( )3
---------------------------

qp1 1, q2p2 1, q3p3 1,+ +

1 r1 0, τ+
--------------------------------------------------------------= =

q1

q1p1 2, q2p2 2, q3p3 2,+ +

1 r1 1, τ+
-----------------------------------------------------------

 
 
 

q2

q1p2 2, q2p3 2, q3p3 3,+ +

1 r2 1, τ+
------------------------------------------------------------

 
 
 

q3

q1p3 3, q2p3 4, q3p3 5,+ +

1 r3 1, τ+
-----------------------------------------------------------

 
 
 

+ +

1 r1 0, τ+
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

3-Buetow/Sochacki  Page 71  Thursday, August 29, 2002  10:01 AM

http://abcbourse.ir/


72 INTEREST RATE AND TERM STRUCTURE MODELING

which simplifies to the following equation similar to equation (A3)

(A7)

Equation (A7) is also solved for θ2 using the bisection method. We now
proceed as in the binomial lattice case to generate the no arbitrage equa-
tion for θi given in equation (42).

P3 1 r1 0, τ+( ) 1 rj 1, τ+( )
j 1=

3

∏ 1 rj 2, τ+( )
j 1=

5

∏

q1
2 1 r2 1, τ+( ) 1 r3 1, τ+( ) 1 rj 2, τ+( )

j 2=

5

∏–

q1q2 1 r2 1, τ+( ) 1 r3 1, τ+( ) q1q2 1 r1 1, τ+( ) 1 r3 1, τ+( )+[ ] 1 rj 2, τ+( )
j 1=
j 2≠

5

∏–

q1q3 1 r2 1, τ+( ) 1 r3 1, τ+( ) q2
2 1 r1 1, τ+( ) 1 r3 1, τ+( ) q3q1 1 r1 1, τ+( ) 1 r2 1, τ+( )+ +[ ]–

1 rj 2, τ+( )
j 1=
j 3≠

5

∏

q2q3 1 r1 1, τ+( ) 1 r3 1, τ+( ) q3q2 1 r1 1, τ+( ) 1 r2 1, τ+( )+[ ] 1 rj 2, τ+( )
j 1=
j 4≠

5

∏–

q3
2 1 r1 1, τ+( ) 1 r2 1, τ+( ) 1 rj 2, τ+( )

j 1=

4

∏– 0=
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An Introductory Guide to
Analyzing and Interpreting

the Yield Curve
Moorad Choudhry

Senior Fellow
Centre for Mathematical Trading and Finance

City University Business School

onsiderable effort is expended by bond analysts and economists in ana-
lyzing and interpreting the shape of the yield curve. This is because the

market perceives that there is a considerable information content associ-
ated with any yield curve at any time. In this chapter we review the main
theories that have been put forward to explain the shape of the yield curve,
all of which have fairly long antecedents. None of the theories can ade-
quately explain everything about yield curves and the shapes they assume
at any time; so, generally, observers seek to explain specific curves using a
combination of the accepted theories. This subject is a large one, and it is
possible to devote several books to it, so here we seek to introduce the main
ideas, with readers directed to the various articles referenced herein. We
assume we are looking at yield curves plotted using risk-free interest rates. 

SHAPES OBSERVED FOR THE YIELD CURVE

The existence of a yield curve itself indicates that there is a cost associated
with funds of different maturities, otherwise we would observe a flat yield

C
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74 INTEREST RATE AND TERM STRUCTURE MODELING

curve. The fact that we very rarely observe anything approaching a flat
yield curve suggests that investors require different rates of return depend-
ing on the maturity of the instrument they are holding.

From observing yield curves in different markets at any time, we
notice that a yield curve can adopt one of four basic shapes, which are:

1. Normal or conventional in which yields are at “average” levels and the
curve slopes gently upwards as maturity increases, all the way to the
longest maturity;

2. Upward-sloping or positive or rising in which yields are at historically
low levels, with long rates substantially greater than short rates;

3. Downward-sloping or inverted or negative in which yield levels are
very high by historical standards, but long-term yields are significantly
lower than short rates;

4. Humped where yields are high with the curve rising to a peak in the
medium-term maturity area, and then sloping downwards at longer
maturities.

Occasionally yield curves will incorporate a mixture of the above
features. For instance, a commonly observed curve in developed econo-
mies exhibits a positive sloping shape up to the penultimate maturity
bond, and then a declining yield for the longest maturity. A diagram-
matic representation of each type of curve is given in Exhibit 4.1.

EXHIBIT 4.1  Observed Yield Curve Shapes
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THE EXPECTATIONS HYPOTHESIS

Simply put, the expectations hypothesis states that the slope of the yield
curve reflects the market’s expectations about future interest rates. There
are in fact four main versions of the hypothesis, each distinct from the
other—and mutually incompatible. 

The expectations hypothesis has a long history, first being described
in Fisher1 and later developed by Hicks2 among others.3 As Shiller4

describes, the thinking behind it probably stems from the way market
participants discuss their view on future interest rates when assessing
whether to purchase long-dated or short-dated bonds. For instance, if
interest rates are expected to fall, investors will purchase long-dated
bonds in order to “lock in” the current high long-dated yield. If all
investors act in the same way, the yield on long-dated bonds will, of
course, decline as prices rise in response to demand; this yield will
remain low as long as short-dated rates are expected to fall, and will
only revert to a higher level once the demand for long-term rates is
reduced. Therefore, downward-sloping yield curves are an indication
that interest rates are expected to fall, while an upward-sloping curve
reflects market expectations of a rise in short-term interest rates.

The expectations hypothesis suggests that bondholders’ expectations
determine the course of future interest rates. The two main versions of the
hypothesis are the local expectations hypothesis and the unbiased expec-
tations hypothesis. The return-to-maturity expectations hypothesis and
yield-to-maturity expectations hypothesis are the other two versions.5

The unbiased expectations hypothesis states that current forward rates
are unbiased predictors of future spot rates. Let ft(T,T+1) be the forward
rate at time t for the period from T to T + 1. If the one-period spot rate at
time T is rT, then according to the unbiased expectations hypothesis,

ft(T,T+1) = Et(rT) (1)

1 I. Fisher, “Appreciation of Interest,” Publications of the American Economic Asso-
ciation (August 1986), pp. 23–39.
2 J. Hicks, Value and Capital (Oxford, UK: Oxford University Press, 1946).
3 See the footnote on page 644 of R. Shiller, “The Term Structure of Interest Rates,”
Chapter 13 in B. Friedman, F. Hahn (eds.), Handbook of Monetary Economics
(North-Holland: 1990) for a fascinating historical note on the origins of the expec-
tations hypothesis. An excellent overview of the hypothesis itself is contained in
Chapter 18 in J. Ingersoll, Theory of Financial Decision Making, (Rowman & Lit-
tlefield: 1987), pp. 389–392. 
4 Shiller, “The Term Structure of Interest Rates.”
5 See Ingersoll, Theory of Financial Decision Making. This is an excellent account,
both comprehensive and accessible.
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which states that the forward rate ft(T,T+1) is the expected value of the
future one-period spot rate given by rT at time T.

The local expectations hypothesis states that all bonds will generate
the same expected rate of return if held over a small term. It is given by

(2)

where P is the zero-coupon bond price.
This version of the hypothesis is the only one that is consistent with

no-arbitrage because the expected rates of return on all bonds are equal
to the risk-free interest rate. For this reason the local expectations
hypothesis is sometimes referred to as the risk-neutral expectations
hypothesis.

The local expectations hypothesis states that all bonds of the same
class, but differing in term to maturity, will have the same expected
holding period rate of return. This suggests that a 6-month bond and a
20-year bond will produce the same rate of return, on average, over the
stated holding period. So if we intend to hold a bond for six months we
will receive the same return no matter which specific bond we buy. In
general, holding period returns from longer-dated bonds are, on aver-
age, higher than those from short-dated bonds. Intuitively we would
expect this, with longer-dated bonds offering higher returns to compen-
sate for their higher price volatility (risk). The local expectations
hypothesis would not agree with the conventional belief that investors,
being risk averse, require higher returns as a reward for taking on
higher risk; in addition, it does not provide any insight about the shape
of the yield curve. 

Cox, Ingersoll, and Ross showed that the local expectations hypothesis
best reflected equilibrium between spot and forward yields.6 This was dem-
onstrated using a feature known as Jensen’s inequality. Jarrow states:

… in an economic equilibrium, the returns on … similar maturity
zero-coupon bonds cannot be too different. If they were too differ-
ent, no investor would hold the bond with the smaller return. This
difference could not persist in an economic equilibrium.7

6 J. Cox, J.E. Ingersoll, and S.A. Ross, “A Re-examination of Traditional Hypotheses
About the Term Structure of Interest Rates,” Journal of Finance (September 1981),
pp. 769–799.
7 R. Jarrow, Modelling Fixed Income Securities and Interest Rate Options (New
York: McGraw-Hill: 1996), p. 50.

Et P t 1+ T,( )[ ]
P t T,( )

-------------------------------------- 1 rt+=
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This reflects economic logic, but in practice other factors can impact on
holding period returns between bonds that do not have similar maturities.
For instance, investors will have restrictions as to which bonds they can
hold—depository institutions are required to hold short-dated bonds for
liquidity purposes. In an environment of economic disequilibrium, these
investors would still have to hold shorter-dated bonds—even if the hold-
ing period return was lower.

So although it is economically neat to expect that the return on a long-
dated bond is equivalent to rolling over a series of shorter-dated bonds, it is
often observed that longer-term (default-free) returns exceed annualized
short-term default-free returns. So an investor who continually rolled over
a series of short-dated zero-coupon bonds would most likely receive a
lower return than if they had invested in a long-dated zero-coupon bond. 

Rubinstein gives an excellent, accessible explanation of why this
should be so.8 The reason is that compared to the theoretical model,
future spot rates are not, in reality, known with certainty. This means
that short-dated zero-coupon bonds are more attractive to investors for
two reasons. First, they are more appropriate instruments to use for
hedging purposes. Secondly, they are more liquid instruments, in that
they may be more readily converted back into cash than long-dated
instruments. With regard to hedging, consider an exposure to rising
interest rates; if the yield curve shifts upwards at some point in the
future, the price of long-dated bonds will fall by a greater amount. This
is a negative result for holders of such bonds, whereas the investor in
short-dated bonds will benefit from rolling over his funds at the (new)
higher rates. With regard to the second issue, Rubinstein states:

… it can be shown that in an economy with risk-averse individuals,
uncertainty concerning the timing of aggregate consumption, the
partial irreversibility of real investments (longer-term physical
investments cannot be converted into investments with earlier pay-
outs without sacrifice), [and] … real assets with shorter-term pay-
outs will tend to have a “liquidity” advantage.

Therefore the demand for short-term instruments is frequently higher,
and hence short-term returns are often lower than long-term returns.

The pure or unbiased expectations hypothesis is more commonly
encountered and states that current implied forward rates are unbiased
estimators of future spot interest rates.9 It assumes that investors act in a

8 M. Rubinstein, Rubinstein on Derivatives (London: RISK Publishing, 1999), pp. 84–85.
9 For original discussion, see F. Lutz, “The Structure of Interest Rates,” Quarterly
Journal of Economics (November 1940), pp. 36–63; and Fisher, “Appreciation of
Interest.”
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way that eliminates any advantage of holding instruments of a particular
maturity. Therefore if we have a positive-sloping yield curve, the unbi-
ased expectations hypothesis states that the market expects spot interest
rates to rise; equally, an inverted yield curve is an indication that spot
rates are expected to fall. If short-term interest rates are expected to rise,
then longer yields should be higher than shorter ones to reflect this. If
this were not the case, investors would only buy the shorter-dated bonds
and roll over the investment when they matured. Likewise, if rates are
expected to fall then longer yields should be lower than short yields. 

The unbiased expectations hypothesis states that the long-term
interest rate is a geometric average of expected future short-term rates.
This gives us:

(1 + rsN)N = (1 + rs1)(1 + 1rf2) . . . (1 + N

 

−1rfN) (3)

or

(1 + rsN)N = (1 + rsN

 

−1)N

 

−1(1 + N

 

−1rfN) (4)

where rsN is the spot yield on a N-year bond and n

 

−1rfn is the implied 1-
year rate n years ahead. 

For example, if the current 1-year spot rate is rs1 = 5.0% and the mar-
ket is expecting the 1-year rate in a year’s time to be 1rf2 = 5.539%, then
the market is expecting a 100 investment in two 1-year bonds to yield

100(1.05)(1.05539) = 110.82

after two years. To be equivalent to this, an investment in a 2-year bond
has to yield the same amount, implying that the current 2-year rate is
rs2 = 5.7% as shown below:

100(1 + rs2)2 = 110.82

which gives us rs2 = 5.27%, and provides the correct future value as
shown below:

100(1.0527)2 = 110.82

This result must be so—to ensure no arbitrage opportunities exist in
the market; in fact this is illustrated in elementary texts that discuss and
derive forward interest rates. According to the unbiased expectations
hypothesis the forward rate 0rf2 is an unbiased predictor of the spot rate
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1rs1 observed one period later; on average the forward rate should equal
the subsequent spot rate. The hypothesis can be used to explain any
shape in the yield curve.

A rising yield curve is therefore explained by investors expecting
short-term interest rates to rise, that is 1rf2 > rs2. A falling yield curve is
explained by investors expecting short-term rates to be lower in the
future. A humped yield curve is explained by investors expecting short-
term interest rates to rise and long-term rates to fall. Expectations, or
views on the future direction of the market, are primarily a function of
the expected rate of inflation. If the market expects inflationary pressures
in the future, the yield curve will be positively-shaped; if inflation expec-
tations are inclined towards disinflation, then the yield curve will be neg-
ative. However, several empirical studies including one by Fama10 have
shown that forward rates are essentially biased predictors of future spot
interest rates—and often overestimate future levels of spot rates. 

The unbiased hypothesis has also been criticized for suggesting that
investors can forecast (or have a view on) very long-dated spot interest
rates, which might be considered slightly unrealistic. As yield curves in
most developed-country markets exist to a maturity of up to 30 years or
longer, such criticisms have some substance. Are investors able to fore-
cast interest rates 10, 20, or 30 years into the future? Perhaps not. Nev-
ertheless, this is indeed the information content of, say, a 30-year bond;
because the yield on the bond is set by the market, it is perfectly valid to
suggest that the market has a view on inflation and future interest rates
for up to 30 years forward.

The expectations hypothesis is stated in more than one way; other
versions include the return-to-maturity expectations hypothesis, which
states that the total return generated from an investment of term t to T
by holding a (T − t)-period bond will be equal to the expected return
generated by a holding a series of 1-period bonds and continually roll-
ing them over on maturity. More formally we write

(5)

The left-hand side of equation (5) represents the return received by
an investor holding a zero-coupon bond to maturity, which is equal to
the expected return associated with rolling over $1 from time t to time T
by continually reinvesting one-period maturity bonds, each of which has
a yield of the future spot rate rt.

10 E.F. Fama, “The Information in the Term Structure,” Journal of Financial Eco-
nomics (December 1984), pp. 509–528.

1
P t T,( )
----------------- Et 1 rt+( ) 1 rt 1++( )… 1 rT 1–+( )[ ]=
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A related version, the yield-to-maturity hypothesis, described in terms
of yields, states that the periodic return from holding a zero-coupon bond
will be equal to the return from rolling over a series of coupon bonds, but
refers to the annualized return earned each year rather than the total
return earned over the life of the bond. This assumption enables a zero-
coupon yield curve to be derived from the redemption yields of coupon
bonds. It is given by

(6)

where the left-hand side of equation (6) specifies the yield-to-maturity of
the zero-coupon bond at time t. In this version the expected holding period
yield on continually rolling over a series of 1-period bonds will be equal to
the yield that is guaranteed by holding a long-dated bond until maturity.

The unbiased expectations hypothesis of course states that forward
rates are equal to the spot rates expected by the market in the future.
Cox, Ingersoll, and Ross suggest that only the local expectations
hypothesis describes a model that is purely arbitrage-free, as under the
other scenarios it would be possible to employ certain investment strate-
gies that would produce returns in excess of what was implied by
today’s yields.11 Although it has been suggested12 that the differences
between the local and the unbiased hypotheses are not material, a model
that describes such a scenario would not reflect investors’ beliefs—
which is why further research is ongoing in this area.

The unbiased expectations hypothesis does not, by itself, explain all
the shapes of the yield curve or the information content contained
within it, so it is often tied in with other explanations, including the
liquidity preference theory.

LIQUIDITY PREFERENCE THEORY

Intuitively we might feel that longer maturity investments are riskier than
shorter ones. An investor lending money for a 5-year term will usually
demand a higher rate of interest than if they were to lend the same cus-

11 Cox, Ingersoll, and Ross, “A Re-examination of Traditional Hypothesis About the
Term Structure of Interest Rates.”
12 For example, see J. Campbell, “A Defense of Traditional Hypotheses About the
Term Structure of Interest Rates,” Journal of Finance (March 1986), pp. 183–193;
see also M. Livingstone, Money and Capital Markets (Prentice-Hall: 1990), pp. 254–
256.
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tomer money for a 5-week term. This is because the borrower may not be
able to repay the loan over the longer time period as they may, for
instance, have gone bankrupt in that period. For this reason longer-dated
yields should be higher than short-dated yields, to compensate the lender
for the higher risk exposure during the term of the loan.13

We can consider this theory in terms of inflation expectations as
well. Where inflation is expected to remain roughly stable over time, the
market would anticipate a positive yield curve. However, the expecta-
tions hypothesis cannot, by itself, explain this phenomenon—under sta-
ble inflationary conditions one would expect a flat yield curve. 

The risk inherent in longer-dated investments, or the liquidity prefer-
ence theory, seeks to explain a positively-shaped curve. Generally, borrow-
ers prefer to borrow over as long a term as possible, while lenders will wish
to lend over as short a term as possible. Therefore, as we first stated, lend-
ers have to be compensated for lending over the longer term; this compen-
sation is considered a premium for a loss in liquidity for the lender. The
premium is increased the further the investor lends across the term struc-
ture, so that the longest-dated investments will, all else being equal, have
the highest yield. So the liquidity preference theory states that the yield
curve should almost always be upward-sloping, reflecting bondholders’
preference for the liquidity and lower risk of shorter-dated bonds. An
inverted yield curve could still be explained by the liquidity preference the-
ory when it is combined with the unbiased expectations hypothesis. A
humped yield curve might be viewed as a combination of an inverted yield
curve together with a positive-sloping liquidity preference curve. 

The difference between a yield curve explained by unbiased expecta-
tions and an actual observed yield curve is sometimes referred to as the
liquidity premium. This refers to the fact that in some cases short-dated
bonds are easier to transact in the market than long-term bonds. It is
difficult to quantify the effect of the liquidity premium—which is not
static and fluctuates over time. The liquidity premium is so called
because, in order to induce investors to hold longer-dated securities, the
yields on such securities must be higher than those available on short-
dated securities, which are more liquid and may be converted into cash
more easily. The liquidity premium is the compensation required for
holding less liquid instruments. 

If longer-dated securities then provide higher yields, as is suggested
by the existence of the liquidity premium, they should generate, on aver-
age, higher total returns over an investment period. This is inconsistent
with the local expectations hypothesis. More formally we can write:

13 For original discussion, see Hicks, Value and Capital.
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0 = L1 < L2 < L3 < . . . < Ln and (L2 − L1) > (L3 − L2) > . . . > (Ln − Ln−1)

where L is the premium for a bond with term to maturity of n years. This
states that the premium increases as the term to maturity rises and that an
otherwise flat yield curve will have a positively-sloping curve, with the
degree of slope steadily decreasing as we extend along the yield curve. This
is consistent with observation of yield curves under “normal” conditions.

The expectations hypothesis assumes that forward rates are equal to
the expected future spot rates, as shown by equation (7):

n−1rfn = E(n−1rsn) (7)

where E( ) is the expectations operator for the current period. This
assumption implies that the forward rate is an unbiased predictor of the
future spot rate, as we suggested earlier. Liquidity preference theory, on
the other hand, recognizes the possibility that the forward rate may con-
tain an element of liquidity premium which declines over time as the
starting period approaches, given by equation (8):

n−1rfn > E(n−1rsn) (8)

If there was uncertainty in the market about the future direction of
spot rates—and hence where the forward rate should lie—equation (8)
is adjusted to give the reverse inequality.

Exhibit 4.2 is a diagrammatic representation of the liquidity pre-
mium element in an hypothetical yield curve.

EXHIBIT 4.2  Yield Curve Explained by Expectations Hypothesis and
 Liquidity Preference
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MONEY SUBSTITUTE HYPOTHESIS

A particular explanation of short-dated bond yield curves has been
attempted by Kessel.14 In the money substitute theory, short-dated bonds
are regarded as substitutes for holding cash. Investors hold only short-
dated market instruments because these are viewed as low or negligible
risk. As a result, the yields of short-dated bonds are depressed due to the
increased demand and lie below longer-dated bonds. Borrowers, on the
other hand, prefer to issue debt for longer maturities, and on as few occa-
sions as possible, to minimize funding costs and reduce uncertainty.
Therefore, the yields of longer-dated paper are driven upwards due to a
combination of increased supply and lower liquidity. In certain respects
the money substitute theory is closely related to the liquidity preference
theory and, by itself, does not explain inverted or humped yield curves. 

SEGMENTATION HYPOTHESIS

The capital markets are made up of a wide variety of users, each with dif-
ferent requirements. Certain classes of investors will prefer dealing at the
short-end of the yield curve, while others will concentrate on the longer-
end of the market. The segmented markets theory suggests that activity is
concentrated in certain specific areas of the market, and that there are no
interrelationships between these parts of the market; the relative amounts
of funds invested in each area of the maturity spectrum cause differentials
in supply and demand, which results in humps in the yield curve. That is,
the shape of the yield curve is determined by supply and demand for cer-
tain specific maturity investments, each of which has no reference to any
other part of the curve.

The segmented markets hypothesis seeks to explain the shape of the
yield curve by stating that different types of market participants invest
in different sectors of the term structure, according to their require-
ments. So, for instance, the banking sector has a requirement for short-
dated bonds, while pension funds will invest in the long-end of the mar-
ket. This was first described in Culbertson.15 There may also be regula-
tory reasons why different investors have preferences for particular
maturity investments. 

14 R.A. Kessel, “The Cyclical Behaviour of the Term Structure of Interest Rates,” in
Essays in Applied Price Theory (Chicago, IL: University of Chicago, 1965).
15 J.M. Culbertson, “The Term Structure of Interest Rates,” Quarterly Journal of
Economics (November 1957), pp. 485–517.
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So, for example, banks and other types of depository institutions
concentrate a large part of their activity at the short-end of the curve, as
part of daily cash management (known as asset and liability manage-
ment) and for regulatory purposes (known as liquidity requirements).
Fund managers such as pension funds and insurance companies are
active at the long-end of the market. Few institutional investors, how-
ever, have any preference for medium-dated bonds. This behavior on the
part of investors will lead to high prices (low yields) at both the short-
and long-ends of the yield curve and lower prices (higher yields) in the
middle of the term structure.

According to the segmented markets hypothesis, a separate market
exists for specific maturities along the term structure, thus interest rates
for these maturities are set by supply and demand.16 Where there is no
demand for a particular maturity, the yield will lie above other seg-
ments. Market participants do not hold bonds in any other area of the
curve outside their area of interest17 so that short-dated and long-dated
bond yields exist independently of each other. The segmented markets
theory is usually illustrated by reference to banks and life companies.
Banks and other types of depository institutions hold their funds in
short-dated instruments, usually no longer than five years in maturity.
This is because of the nature of retail banking operations, with a large
volume of instant access funds being deposited at banks, and also for
regulatory purposes. Holding short-term, liquid bonds enables banks to
meet any sudden or unexpected demand for funds from customers. The
classic theory suggests that as banks invest their funds in short-dated
bonds, the yields on these bonds is driven down. When they subse-
quently liquidate part of their holding, perhaps to meet higher demand
for loans, the yields are driven up and prices of the bonds fall. This
affects the short-end of the yield curve but not the long-end.

The segmented markets theory can be used to cover an explanation
of any particular shape of the yield curve, although it may be argued
that it fits best with positive-sloping curves. However, it does not offer
us any help if used to interpret the yield curve whatever shape it may be,
and therefore offers no information content during analysis. By defini-
tion, the theory suggests that for investors, bonds with different maturi-
ties are not perfect substitutes for each other. This is because different
bonds would have different holding period returns, making them imper-
fect substitutes of one another. As a result of bonds being imperfect sub-
stitutes, markets are segmented according to maturity. 

16 See Culbertson, “The Term Structure of Interest Rates.”
17 For example, retail and commercial banks hold bonds in the short dates, while life
assurance companies hold long-dated bonds.
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The segmentations hypothesis is a reasonable explanation of certain
features of a conventional positively-sloping yield curve, but, by itself, is
not sufficient. There is no doubt that banks and building societies have a
requirement to hold securities at the short-end of the yield curve, as
much for regulatory purposes as for yield considerations; however, other
investors are probably more flexible and will place funds where value is
deemed to exist. Nevertheless, the higher demand for benchmark securi-
ties does drive down yields along certain segments of the curve.

A slightly modified version of the market segmentation hypothesis is
known as the preferred habitat theory, first described in Modigliani and
Sutch,18 which states not only that investors have a preferred maturity
but also that they may move outside this sector if they receive a premium
for so doing. This would explain “humped” shapes in yield curves. 

This suggests that different market participants have an interest in
specified areas of the yield curve, but can be induced to hold bonds from
other parts of the maturity spectrum if there is sufficient incentive.
Hence banks may, at certain times, hold longer-dated bonds once the
price of these bonds falls to a certain level, making the return on the
bonds worth the risk involved in holding them. Similar considerations
may persuade long-term investors to hold short-dated debt. So higher
yields will be required to make bondholders shift out of their usual area
of interest. This theory essentially recognizes the flexibility that inves-
tors have, outside regulatory or legal requirements (such as the terms of
an institutional fund’s objectives), to invest in whatever part of the yield
curve they identify value. The preferred habitat theory may be viewed as
a version of the liquidity preference hypothesis, where the preferred
habitat is the short-end of the yield curve, so that longer-dated bonds
must offer a premium in order to entice investors to hold them.19

THE COMBINED THEORY

The explanation for the shape of the yield curve at any time is more likely
to be described by a combination of the pure expectations hypothesis and
the liquidity preference theory, and possibly one or two other theories.
Market analysts often combine the unbiased expectations hypothesis with
the liquidity preference theory into an “eclectic” theory. The result is
fairly consistent with any shape of yield curve, and is also a predictor of
rising interest rates. 

18 F. Modigliani and R. Sutch, “Innovations in Interest Rate Policy,” American Eco-
nomic Review (1966), pp. 178–197.
19 This is described in Cox, Ingersoll, and Ross, “A Re-examination of Traditional
Hypotheses About the Term Structure of Interest Rates.” 

4-Choudhry-Guide  Page 85  Thursday, August 29, 2002  10:01 AM

http://abcbourse.ir/


86 INTEREST RATE AND TERM STRUCTURE MODELING

In the combined theory, the forward interest rate is equal to the
expected future spot rate, together with a quantified liquidity premium.
This is shown by equation (9):

0rfi = E(i−1rs1) + Li (9)

where Li is the liquidity premium for a term to maturity of i years. The
size of the liquidity premium is expected to increase with increasing matu-
rity20—an example is given below.

Consider the interest rate structure in Exhibit 4.3. The current term
structure is positive-sloping since the spot rates increase with increasing
maturity. However, the market expects future spot rates to be constant
at 4.5%. The forward and spot rates are also shown; however, the for-
ward rate is a function of the expected spot rate and the liquidity pre-
mium. This premium is equal to 0.50% for the first year, 1.0% in the
second and so on.

The combined theory is consistent with an inverted yield curve. This
will apply even when the liquidity premium is increasing with maturity;
for example, where the expected future spot interest rate is declining.
Typically this would be where there was a current term structure of fall-
ing yields along the term structure. The spot rates might be declining
where the fall in the expected future spot rate exceeds the corresponding
increase in the liquidity premium.

THE FLAT YIELD CURVE

The conventional theories do not seek to explain a flat yield curve.
Although it is rare to observe flat curves in a market, certainly for any
length of time, they do emerge occasionally in response to peculiar eco-
nomic circumstances. Conventional thinking contends that a flat curve is
not tenable because investors should, in theory, have no incentive to hold
long-dated bonds over shorter-dated bonds when there is no yield pre-

EXHIBIT 4.3  Positive Yield Curve with Constant Expected Future Rates

Period n 0 1 2 3 4 5
E(rs) 4.5%  4.5%  4.5%  4.5%  4.5%  
Forward rate 0rfn 5.00% 5.50% 6.00% 6.50% 7.50%
Spot rate rsn 5% 5.30% 5.80% 6.20% 6.80% 7%     

20 So that Li > Li−1.
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mium, so that as they sell off long-dated paper the yield at the long-end
should rise, producing an upward-sloping curve. 

In previous circumstances of a flat curve, analysts have produced
different explanations for their existence. In November 1988 the U.S.
Treasury yield curve was flat relative to the recent past. Researchers
contended that this was the result of the market’s view that long-dated
yields would fall as bond prices rallied upwards.21 One recommendation
is to buy longer maturities when the yield curve is flat, in anticipation of
lower long-term interest rates, which is directly opposite to the view
that a flat curve is a signal to sell long bonds. In the case of the U.S.
market in 1988, long bond yields did in fact fall by approximately 2%
in the following 12 months. 

This would seem to indicate that one’s view of future long-term
rates should be behind the decision to buy or sell long bonds, rather
than the shape of the yield curve itself. A flat curve may well be more
heavily influenced by supply and demand factors than anything else,
with the majority opinion eventually winning out and forcing a change
in the curve to a more conventional shape.

FURTHER VIEWS ON THE YIELD CURVE

Throughout this discussion we assume an economist’s world of the per-
fect market (also sometimes called the frictionless financial market). Such
a perfect capital market is characterized by:

 ■ Perfect information
 ■ No taxes
 ■ Bullet maturity bonds
 ■ No transaction costs

Of course, in practice markets are not completely perfect. However,
assuming perfect markets makes the discussion of spot and forward
rates and the term structure easier to handle. When we analyze yield
curves for their information content, we have to remember that the mar-
kets that they represent are not perfect, and that frequently we observe
anomalies that are not explained by the conventional theories.

At any one time it is probably more realistic to suggest that a range
of factors contributes to the yield curve being one particular shape. For
instance, short-term interest rates are greatly influenced by the availabil-

21 See H. Levy, Introduction to Investments, Second Edition (Cincinnati, Ohio: South-
Western College Publishing, 1999), pp. 562–564.
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ity of funds in the money market. The slope of the yield curve (usually
defined as the 10-year yield minus the 3-month interest rate) is also a
measure of the degree of tightness of government monetary policy. A
low, upward-sloping curve is often thought to be a sign that an environ-
ment of cheap money, due to a looser monetary policy, is to be followed
by a period of higher inflation and higher bond yields. Equally, a high
downward-sloping curve is taken to mean that a situation of tight
credit, due to a stricter monetary policy, will result in falling inflation
and lower bond yields. 

Inverted yield curves have often preceded recessions; for instance,
The Economist in an article from April 1998 remarked that, with one
exception, every recession in the United States since 1955 had been pre-
ceded by a negative yield curve.22 The analysis is the same: If investors
expect a recession they also expect inflation to fall, so the yields on
long-term bonds will fall relative to short-term bonds. So the conven-
tional explanation for an inverted yield curve is that the markets and the
investment community expect either a slow-down of the economy, or an
outright recession.23 In this case one would expect the monetary author-
ities to ease the money supply by reducing the base interest rate in the
near future: hence an inverted curve. At the same time, a reduction of
short-term interest rates will affect short-dated bonds and these are sold
off by investors, further raising their yield.

While the conventional explanation for negative yield curves is an
expectation of economic slow-down, on occasion other factors will be
involved. In the UK during the period July 1997–June 1999, the gilt yield
curve was inverted.24 There was no general view that the economy was
heading for recession; in fact, the newly elected Labour government
inherited an economy believed to be in satisfactory shape. Instead, the
explanation behind the inverted shape of the gilt yield curve focused on
two other factors: (1) the handing of responsibility for setting interest
rates to the Monetary Policy Committee (MPC) of the Bank of England
and (2) the expectation that the UK would, over the medium term, aban-
don sterling and join the euro currency. The yield curve at this time sug-
gested that the market expected the MPC to be successful and keep

22 The exception was the one precipitated by the 1973 oil shock.
23 A recession is formally defined as two successive quarters of falling output in the
domestic economy.
24 Although the gilt yield curve changed to being positively-sloped out to the 7–8 year
maturity area, for a brief period in June–July 1999, it very quickly reverted to being
inverted throughout the term structure, and remained so until May–June 2001, when
it changed once again to being slightly positive-sloping up to the 4-year term, and
inverting from that point onwards. This shape at least is more logical and explain-
able.
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inflation at a level of around 2.5% over the long term (its target is actu-
ally a 1% range either side of 2.5%), and also that sterling interest rates
would need to come down over the medium term as part of convergence
with interest rates in euroland. These are both medium-term expectations
however, and, in the author’s view, are not logical at the short-end of the
yield curve. In fact the term structure moved to a positive-sloped shape up
to the 6–7 year area, before inverting out to the long-end of the curve, in
June 1999. This is a more logical shape for the curve to assume, but it
was short-lived and returned to being inverted after the two-year term.

There is, therefore, significant information content in the yield
curve, and economists and bond analysts will consider the shape of the
curve as part of their policy-making and investment advice. The shape
of parts of the curve, whether the short-end or long-end, as well that of
the entire curve, can serve as useful predictors of future market condi-
tions. As part of an analysis it is also worthwhile considering the yield
curves across several different markets and currencies. For instance, the
interest-rate swap curve, and its position relative to that of the govern-
ment bond yield curve, is also regularly analyzed for its information
content. In developed-country economies, the swap market is invariably
as liquid as the government bond market, if not more liquid, and so it is
common to see the swap curve analyzed when making predictions
about, say, the future level of short-term interest rates. 

Government policy will influence the shape and level of the yield
curve, including policy on public sector borrowing, debt management and
open-market operations.25 The market’s perception of the size of public
sector debt will influence bond yields; for instance, an increase in the level
of debt can lead to an increase in bond yields across the maturity range.
Open-market operations can have a number of effects. In the short-term it
can tilt the yield curve both upwards and downwards; longer term,
changes in the level of the base rate will affect yield levels. An anticipated
rise in base rates can lead to a drop in prices for short-term bonds, whose
yields will be expected to rise; this can lead to a (temporary) inverted
curve. Finally, debt management policy26 will influence the yield curve.
Much government debt is rolled over as it matures, but the maturity of the
replacement debt can have a significant influence on the yield curve in the
form of humps in the market segment in which the debt is placed, if the
debt is priced by the market at a relatively low price and hence high yield.

25 “Open-market operations” refers to the daily operation by the Bank of England
to control the level of the money supply (to which end the Bank purchases short-term
bills and also engages in repo dealing).
26 In the United Kingdom this is now the responsibility of the Debt Management Of-
fice.
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The Information Content of the UK Gilt Curve:
A Special Case
In the first half of 1999 various factors combined to increase the demand
for gilts, especially at the long-end of the yield curve, at a time of a reduc-
tion in the supply of gilts as the government’s borrowing requirement was
falling. This increased demand led to a lowering in market liquidity as
prices rose and gilts became more expensive (that is, lower-yielding) than
government securities in most European countries. This is a relatively new
phenomenon, witness 10-year UK government yields at 5.07% compared
to U.S. and Germany at 6.08% and 5.10%, respectively, at one point in
August 1999.27 At the long-end of the yield curve, UK rates were, for the
first time in over 30 years, below both German and U.S. yields, reflecting
the market’s positive long-term view of the UK economy. At the end of
September 1999, the German 30-year bond (the 4³�₄% July 2028) was
yielding 5.73% and the U.S. 6.125% 2027 was at 6.29%, compared to
the UK 6% 2028, which was trading at a yield of 4.81%.

The relatively high price of UK gilts was reflected in the yield spread
of interest-rate swaps versus gilts. For example, in March 1999, 10-year
swap spreads over government bonds were over 80 basis points in the
UK compared to 40 basis points in Germany. This was historically large
and was more than what might be required to account purely for the
credit risk of swaps. It appears that this reflected the high demand for
gilts, which had depressed the long-end of the yield curve. At this point
the market contended that the gilt yield curve no longer provided an
accurate guide to expectations about future short-term interest rates.
The sterling swap market, where liquidity is always as high as the gov-
ernment market and (as on this occasion) often higher, was viewed as
being a more accurate prediction of future short-term interest rates. In
hindsight this view turned out to be correct; swap rates fell in the UK in
January and February 1999, and by the end of the following month the
swap yield curve had become slightly upward-sloping, whereas the gilt
yield curve was still inverted. This does indeed suggest that the market
foresaw higher future short-term interest rates and that the swap curve
predicted this, while the gilt curve did not. Exhibit 4.4 shows the change
in the swap yield curve to a more positive slope from December 1998 to
March 1999, while the gilt curve remained inverted. This is an occasion
when the gilt yield curve’s information content was less relevant than
that in another market yield curve, due to the peculiar circumstances
resulting from lack of supply to meet increased demand.

27 Yields obtained from Bloomberg.

4-Choudhry-Guide  Page 90  Thursday, August 29, 2002  10:01 AM

http://abcbourse.ir/


An Introductory Guide to Analyzing and Interpreting the Yield Curve 91

EXHIBIT 4.4  UK Gilt and Swap Yield Curves

Source: Bank of England.
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t is the objective of this chapter is to describe the principles and
approaches to term structure modeling. Readers familiar with the aca-

demic literature addressing the term structure will see that we have
adopted an eclectic mixture of ideas from this area (we indicate the
sources of these ideas, where appropriate). However, such readers also
will note some marked departures from the usual academic assump-
tions, necessitating unusual implementations. These are driven by the
reality of the markets, often overlooked for the sake of analytic cleanli-
ness. We will highlight these and their implications as well.

Computational implementation of anything as complex as the
dynamic term structure model described in this chapter naturally engen-
ders the rigorous adherence to, yet clever application of, some arcane
ideas from software/system engineering. This is beyond the scope of this
introduction, but such topics include numerical recipes; mechanisms to
ensure internal consistencies during development and build-up; tests for

I

* This chapter is based on a research paper written by the authors while employed
by Prudential Securities.
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internal consistency, verification and validation of completed applica-
tions (e.g., put-call parity, cash and carry arbitrage, and others); param-
eterization of models and applications from the markets; and the utility
of advanced computer architectures.

The following division of topics as well as the section flow address
theoretical aspects of the term structure and term structure models, fol-
lowed by the application of the theory to financial instruments and mar-
kets. This is meant to serve only as a “sampler” of how term structure
models can be used as strategic tools. 

In what follows, we will describe some fundamental concepts of the
term structure of interest rates, develop a useful set of static term struc-
ture models and describe the usual approaches to extending these into
dynamic models. We begin with the familiar, discrete-time modeling
approach. That is, units of time quanta are defined (usually in terms of
compounding frequency) and financial manipulations are indexed with
integer, multiple periods.

We then build on the discussion by introducing the continuous-time
analogies to the concepts developed for discrete-time modeling. Continuous-
time modeling allows financial manipulations to be freed from discretization
artifacts (such as compounding frequency) and provides an algebraic
framework that more naturally and rigorously accommodates “rate” as a
concept of change. In addition, this approach opens up a huge field of
applicable mathematics with the attendant opportunity for abstraction.
For example, continuous-time models free the analyst from artificial a pri-
ori assumptions about interest-rate lattices; allowing concentration on the
financial analyses at hand; deferring time-step issues to final implementa-
tion of an algorithm; and choosing an approach based on convenience,
speed, and accuracy.

We next describe the dynamic term-structure model. The assump-
tions, derivation, and parameterizations of the general model are
described. In the last section we apply the dynamic term structure model
to zero-coupon bonds, coupon-paying bonds, and the determination of
par-coupon and horizon yield curves. Applications to other fixed-
income products are presented in other chapters of this book.

INTRODUCTION TO TERM STRUCTURE MODELING

The term structure of interest rates (or term structure) is simply a price
or yield relationship among a set of securities that differ only in the tim-
ing of their cash flows or their term until maturity. These securities
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invariably have a specified set of other attributes in common so that the
study of the term relationship is meaningful.

It is common to think of the term structure as consisting of the current-
coupon U.S. Treasury issues only. This restriction is not necessary since
it is possible to define other term structures derived from other securi-
ties. For example, it is meaningful to define the term structure of sets of
coupon or principal Treasury strips. Other examples include off-the-run
Treasury issues, agency debentures, interest-rate swaps or the notes of
single-A rated banks and finance companies. The set of securities used
to define a term structure is called the reference set. A market sector
(sometimes referred to as a market or a sector) consists of all those
instruments described by a specific term structure. There is the market
sector of coupon or principal Treasury strips, off-the-run Treasuries,
agency debentures, interest-rate swaps, and single-A rated banks and
finance companies, and so forth. Very often, the reference set for a mar-
ket sector may have restrictions on the structure (non-callables only),
liquidity (recent issues only), or price (close to par only) of the securities
that make up the set.

The relationship expressed by the term structure is traditionally the
par-coupon yield relationship, hence the terminology: yield curve. This
also is not a necessary restriction. In general, the term structure could be
the discount function, the spot-yield curve, or some other expression of
the price or yield relationship between the securities. Given the wide-
spread usage of the (par) yield curve for the Treasury market, it is not
surprising that many market sectors are defined from a reference set
derived from the Treasury market. For example, the reference set that
defines the agency debenture market is a set of yield spreads to the on-
the-run Treasuries, so that a 5-year debenture issued by an agency may
be priced at par to yield 15 basis points more than the current 5-year
Treasury issue. If the Treasury issue is trading at a 6.60% yield to matu-
rity, the par priced agency issue has a 6.75% coupon. By inference, from
the spread quote of 15 basis points, the reference yield for the 5-year
term is 6.75%. Similar statements can be made for the interest-rate
swap and the corporate-bond markets.

It needs to be emphasized that the reference set of bonds used to
define the term structure of interest rates and the resulting term struc-
ture itself are not one and the same. Indeed, the term structure, as a
complete description of the entire yield curve, ultimately can be used to
analyze all manner of option laden, index amortizing swaps or deben-
tures that are in the same market sector. The “vanilla” reference set con-
sists of individual bonds that are used mainly to define the term
structure or to derive its defining relationships—spot-yield curve, spot-
rate process, discount function, and the like.
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Theories about the term structure of interest rates fall into two cate-
gories:

 

 ■ Qualitative theories seek to explain the shape of the yield curve based
on economic principles. Three theories attract the widest attention: the
expectations, liquidity-preference, and preferred-habitat (or hedging
pressure) theories.

 

 ■ Quantitative theories seek to mathematically characterize the term
structure (often in harmony with one of the qualitative theories).

Usually, a quantitative theory about the term structure of interest
rates culminates in a mathematical model, a term structure model, that
exhibits useful properties. Specifically, a term structure model is the
mathematical representation of the relationship among the securities in
a market sector. This formalizes the distinction between the reference set
used to define a market sector and a term structure model.

Term Structure Models
The simplest and most familiar term structure model is the (semi-logarithmic)
graph of the U.S. Treasury yield curve found daily in the Wall Street
Journal and in the business section of many newspapers. This model is
useful mainly as a visualization of the yield relationship between the
most recently issued shorter-term Treasury instruments and bonds. The
graph can be characterized by a mathematical equation and is one
example of the set of interpolation models of the term structure. These
“connect-the-dots” models can be useful in providing a quantitative
way to price bonds outside the current-coupon Treasury issues, but their
utility is rather limited. Bonds that are valued through a linear-interpo-
lation technique may not be “fairly” valued in the sense that an average
yield may not be equal to the “par-coupon” yield corresponding to the
same date. Later in this chapter we provide a discussion of how the par-
coupon curve is constructed to be fairly valued in comparison to the set
of reference Treasury issues.

The term structure model as described above simply provides a
snapshot of the relationship between the yields for selected Treasury
maturities on a given day. It is often required that term structure models
exhibit additional “analytic” properties. One such property is the con-
sistency associated with the preclusion of riskless arbitrage when the
term structure model is used for pricing. More will be said about this
later in the chapter. For now, it is intended merely to indicate that the
“visualization” of the yield relationship to term may be neither com-
pletely useful nor adequate.
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More generally, term structure models are called on to describe the
evolution of a set of interest rates over time. This motivates the follow-
ing distinction in classifying term structure models:

 

 ■ Static models of the term structure offer a mechanism to establish the
“present value of a future dollar” in a deterministic economy. That is,
no allowance for uncertainty or interest-rate volatility is explicitly
incorporated into the model.

 

 ■ Dynamic models of the term structure, in contrast to static models,
explicitly allow for uncertainty in the future course of interest rates.

Ideally, a dynamic model of the term structure should have useful
static models embedded within. That is, with no contingency on the
receipt of a future cash payment or when there is an assumption of neg-
ligible volatility, a dynamic model should correspond to a consistent
static model.

The essence of term structure modeling is the process of converting
the market description of a sector’s reference set (the data) into a math-
ematical set of relationships that characterizes all issues in a sector. This
is by no means trivial to do correctly. For example, the same model that
correctly values a note in the Treasury market should also correctly
value an option on that note, the futures contract into which that note
may be deliverable, and an option on that futures contract. It should
also reveal if the traded basis on that note is rich or cheap relative to the
cash, futures, and options markets. It should also be able to describe
any stripping or reconstitution opportunities between coupon and prin-
cipal strips and the cash market. These analyses should not be the result
of several models, but of a single term structure model.

A key element of the modeling process is to eliminate distinguishing
characteristics associated with each constituent of the reference set. For
example, in the on-the-run set of Treasury issues, there are bills as well
as notes and bonds. The bills have different conventions for day count-
ing, pricing, and yield expression from those of the coupon paying
issues of the sector. These characteristics need to be removed prior to
developing the mathematical relation of the term structure model (as do
the distinguishing characteristics for notes and bonds). In this simple
example, a model of the Treasury term structure might be the spot curve
or the discount function, as opposed to a “connect-the-dots” model to
which no yield adjustments have been made.

The mathematical relationship of a term structure model can be used
to characterize all issues in a sector. As is the case for the Treasury sector,
every instrument can be considered a collection of zero-coupon bonds (the
maturities of which correspond to the coupon/principal payment dates, the
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denominations of which correspond to the amount of coupon/principal
paid). Accordingly, the discount function or equivalently, its correspond-
ing spot-yield curve, furnishes a pricing technique for each zero-coupon
bond and, therefore, for each of the instruments. With this insight, the
utility of an equivalence between the spot-yield curve and discount func-
tion, which are derived from the original reference set, is readily apparent.

It will be seen later that a technical discussion of term structure mod-
els is really equivalent to a discussion of the (zero-coupon) spot-yield
curve. The theory of the term structure of interest rates focuses on a term
structure model that models the movement of the spot (zero-coupon)
yield over time. Once such a term structure model is developed, any coupon
paying bond may be viewed in terms of its constituent zero-coupon bonds
and analyzed in the context of this term structure model.

Dynamic Term Structure Models
Modern financial markets are predicated on the notions of contingency
and uncertainty. Many recent financial innovations are directed at cop-
ing with the uncertainty of markets and the contingency of obligations.
As part of this evolutionary process, dynamic models of securities and
their behavior in the markets are at the forefront of financial economic
research and application. In the fixed-income markets, this condition
dominates and drives the need for dynamic term structure models.

The dynamic term structure model of a market sector, as defined by a
reference set of securities, is a mathematical set of relationships that can
be used to characterize any security in that market sector in which mar-
ket uncertainty dominates the expected timing and receipt of cash flows.
There are several qualitative essentials that need to be accommodated by
a useful modeling approach. The ability to value fixed-income securities
at any point in time (present or future) for conventional or forward set-
tlement is a necessary first step. This is especially true in the valuation of
compound or derivative instruments. Indeed, before the value of a bond
option may be determined, the ability to calculate the (probabilistic)
expected value of the bond on the future exercise date (conditioned on
current market condition) is needed. Complementing this, reasonable
variations from this expectation also need to be determined and weighed
relative to the expected outcome. It is essentially this same idea that
allows for the analysis of a futures contract, an interest-rate cap, or an
option on a swap. In addition, to determine the performance risk that
results from market moves, a rationale for incorporating market changes
needs to be embedded into the modeling process.

With these premises in mind, the following assertions regarding
dynamic models for the term structure of interest rates are postulated:
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 ■ The model must have the capability to extrapolate into the future an
equilibrium evolution of the term structure of interest rates, given its
form on a specified day, and must preclude riskless arbitrage.

 

 ■ The model must allow a probabilistic description of how the term
structure may deviate from its expected extrapolation while maintain-
ing the model’s equilibrium assumption.

 

 ■ The model must embody a rationale to incorporate perturbations from
the equilibrium that correspond to the economic fundamentals that
drive the financial markets.

This treatise is focused on a dynamic term structure model that responds
to the imperatives outlined.

TERM STRUCTURE MODELING IN DISCRETE TIME

In this section we present some fundamental concepts in term structure
theory, such as the discount function, the spot rate and spot yield, and
the forward rate. While these initially may appear to be esoteric in
nature, they are in fact closely interrelated quantities that directly repre-
sent the term structure, or act to influence the course of future interest
rates in an arbitrage-free environment. In this section these concepts are
shown to be incorporated into the different expressions that describe
the various qualitative term structure theories, such as the expectation,
preferred-habitat, and liquidity-preference hypotheses. The continuous-
time term structure model discussed later in this chapter evolved from
the eclectic compilation of earlier theories.

Discount Function
The discount function incorporates market yield-curve information to
express the present value of a future dollar as a function of the term to
its receipt. As such, the discount function is a valid expression of the
term structure of interest rates by virtue of the price/yield relationship.
Since the discount function is used to quantify the value of a future dol-
lar, the discount function also provides a direct means to value a coupon
paying bond since the coupon and principal payments are simply scalar
multiples of a single dollar. As a result, the discount function can be
used as a reference check for other quantitative term structure models.

Quantitative term-structure models ultimately deal with the analysis
of pure discount bonds. (Discount bonds, or zero-coupon bonds, are the
simplest types of bonds to analyze as there is only the repayment of par
at maturity. Further, all other bonds can be built from a series of dis-
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count bonds and options on discount bonds.) As a consequence of mod-
eling the yield movements of discount bonds, term structure models
describe their price movements since the price/yield relationship allows
the term structure to be analyzed in terms of either price or yield.

This relationship is addressed further later in this chapter, in which
the term structure model is expressed in terms of price as a function of
rate and time.

If it is assumed that the discount bond pays one dollar at maturity,
then the present value of the bond is some decimal fraction less than
one. For a set of discount bonds of increasing maturities, there is the
corresponding set of present values starting from approximately 0.999
and decreasing thereafter. This set of present values is called the “dis-
count function,” and is shown in Exhibit 5.1.

The discount function is the term-to-maturity relationship of the
present value of a future unit of cash flow. More formally, for a cash
flow, CF, received after a term, T, from today, t, the present value, PV, of
that cash flow is discounted, d, from the future value CF as expressed by
the relation

(1)

where

EXHIBIT 5.1  Discount Function

PV(t,T) = present value of the cash flow at t
d(t,T) = discount at t for a cash flow received T after t
CF(t,T) = cash flow received at t + T

PV t T,( ) d t T,( ) CF t T,( )×=
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As we are able to generate the discount function, d, for all terms-to-
maturity, T, this can be a valid representation of the term structure of
interest rates. Indeed, the discount function reflects the Treasury term
structure when the discount function exactly reprices the current-coupon
Treasury issues.

Deriving the Discount Function for On-the-Run Treasuries
More generally, let P(t,i) be the set of closing prices on (date) t for the
set of current-coupon Treasury bonds (where the index, i, associates a
specific issue)

Each of these instruments has its own time series of cash flows, each
with its own individual term-to-maturity. For the Treasury bills, the
cash flows and associated terms-to-maturity are

and for the periodic instruments,

where the term to each of the cash flows, T(i,j), is specific to the instrument.
The index j is the sequence of the cash flow in the time series for security i.

The present value of a coupon paying instrument is simply the sum
of the discounted present values of the cash flows that make up the cou-
pon payments and the payment of principal. Accordingly, for the dis-
count function to model the Treasury term structure (i.e., the market
sector defined by the on-the-run Treasury reference set), the following
equations must be simultaneously satisfied. In this way, the discount
function will reprice the current-coupon Treasury issues.

P(t,3-month): price of the 3-month (13-week) bill, at time t
P(t,6-month): price of the 6-month (26-week) bill, at time t
P(t,2-year): price of the 2-year note, at time t
. . . . . .
P(t,30-year): price of the 30-year bond, at time t

3-month bill: CF(t,T(3-month,1))
6-month bill: CF(t,T(6-month,1))

2-year note: CF(t,T(2-year,1)), CF(t,T(2-year,2)), CF(t,T(2-year,3)),
CF(t,T(2-year,4))

. . . . . .
30-year bond: CF(t,T(30-year,1)), CF(t,T(30-year,2)), . . ., CF(t,T(30-

year,60)),

P(t,3-month) = d(t,T(3-month,1)) × CF(t,T(3-month,1))
P(t,6-month) = d(t,T(6-month,1)) × CF(t,T(6-month,1))
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The last cash flow of each series consists of the principal payment
and, for the notes and bond, one coupon payment. The solution to these
simultaneous equations furnishes many distinct points of term in which
the discount function is defined; the long bond alone may have as many
as 60 term points. Depending on the circumstances surrounding each
auction, there may be as many as over 90 distinct points of term defin-
ing the discount function.

As with the earlier “connect-the-dots” model for the yield curve, in
which the yield points were connected to generate intermediate values
for the term structure, similar ideas can be used to accommodate the
cash flows that do not fall on one of the terms, T(i,j), enumerated
above. In fact, interpolation techniques using spline functions may be
applied to create a continuous discount-function curve.1

The discount function forms the basis for the development of a term
structure model, as will be developed further in later sections. As the
discount function is an expression of the term structure based on price,
there is no ambiguity of compounding periodicity, as with yield based
term structure models. The discount function simply expresses the non-
dimensional, fractional, present value of a unit cash flow to be received
after some term. The term may be specified in a unit of time (e.g., years,
months, or days) or in periods, in which the period length is a unit of
time.

Spot-Yield Curve
With the assumption of a compounding convention (usually semian-
nual), the discount function can be used to derive the equivalent Trea-
sury zero-coupon structure—sometimes referred to as the spot-yield
curve. In this case, the spot-yield curve is an equivalent term structure
representation based on yield that provides a view of the term structure

P(t,2-year) = d(t,T(2-year,1)) × CF(t,T(2-year,1))
+ d(t,T(2-year,2)) × CF(t,T(2-year,2))
+ d(t,T(2-year,3)) × CF(t,T(2-year,3))
+ d(t,T(2-year,4)) × CF(t,T(2-year,4))

. . . . . .
P(t,30-year)) = d(t,T(30-year,1)) × CF(t,T(30-year,1))

+ d(t,T(30-year,2)) × CF(t,T(30-year,2))
. . . 
+ d(t,T(30-year,60)) × CF(t,T(30-year,60))

1 See Oldrich A. Vasicek and H. Gifford Fong, “Term Structure Modeling Exponen-
tial Spline,” Journal of Finance (May 1982), pp. 339–348.
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that is more familiar to readers. The equivalence between these two
forms of the term structure is used later in this chapter.

The spot yield, R, is related to the discount function, d, through the
price/yield relation. By definition of the internal rate of return (IRR), the
present value at t, PV(t,n), of a cash flow received n periods in the
future, CF(t,n), has the IRR (or spot yield), R(t,n), through the relation

(2)

We use the discrete notion of integer periods, with each period of length
P, to keep the math simple at this point.

Comparing equations (2) and (1) provides the relation between the
spot yield and the discount function

(3)

where

The spot-yield curve is just the set of spot yields for all terms-to-
maturity. In contrast, the spot rate is simply the one-period rate prevail-
ing on t for repayment one period later. In the above notation, the spot
rate is denoted R(t,1).

We can generalize the earlier comment about coupon paying bonds
in terms of the set of spot yields. The present value of a coupon paying
instrument is simply the sum of the discounted (present value) of the
cash flows that make up the coupon payments and the payment of prin-
cipal. The analogy to equation (2) for a coupon paying bond using spot
yields is

(2a)

Similarly, the analogy to equation (1) for a coupon paying bond
using the discount function is given by

PV(t,n) = d(t,1) × CF(t,1) + d(t,2) × CF(t,2) + . . . + d(t,n) × CF(t,n) (1a)

d(t,n) = discount of a cash flow received n periods after t
R(t,n) = n-period spot yield on t

PV t n,( ) CF t n,( )
1 R t n,( )+[ ]n

-----------------------------------=

d t n,( ) 1

1 R t n,( )+[ ]n
-----------------------------------=

PV t n,( ) CF t 1,( )
1 R t 1,( )+[ ]

-------------------------------- CF t 2,( )

1 R t 2,( )+[ ]2
----------------------------------- … CF t n,( )

1 R t n,( )+[ ]n
-----------------------------------+ + +=
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Implied Forward Rate
A consequence of the discount function, spot yield, and spot rate is the
immediate relation to the (implied) forward rates. The implied forward rate
is the spot rate embodied in today’s yield curve for some period in the
future. The forward rate generally is regarded as an indication of future
spot rates in an arbitrage-free economy. In the absence of arbitrage and
uncertainty, the future spot rate, by definition, is equal to the forward rate.
In the arbitrage-free term structure model discussed later in this chapter, it
can be shown that the future spot rate continuously converges toward the
forward rate as the spot rate evolves over time.

Specifically, the one-period forward rate, F, can be determined from
the spot yields as follows. Consider the one-period and two-period spot
yields; the forward rate, F, may be found from

(1 + R(t,2))2 = (1 + R(t,1)) × (1 + F(t,1,1)) (4)

where

This relation follows from the no-arbitrage assumption intrinsic in
the concept of forward rates. The calculation of the forward rate pre-
sumes that an investment today for two periods provides the same
return as a one-period investment today immediately rolled into another
one-period investment one period from now. That is

                         (5)

           (6)

By equating equations (5) and (6), equation (4) results.

Deriving Forward Rates from Spot Yields
Implied from the term structure, through the spot-yield curve, is a set of
forward rates. These forward rates may be iteratively defined from the
above and written as follows

(1 + R(t,n))n = (1 + R(t,n−1))n−1 × (1 + F(t,1,n−1))

R(t,2) = two-period spot yield on t
R(t,1) = one-period spot rate on t
F(t,1,1) = one-period forward rate one-period from t

PV t( ) CF t 2,( )

1 R t 2,( )+[ ]2
-----------------------------------=

CF t 2,( )
1 R t 1,( )+[ ] 1 F t 1 1, ,( )+[ ]×

----------------------------------------------------------------------------=
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where in addition to the earlier notation, F(t,1,n−1) = one-period for-
ward rate n−1 periods from t, and noting, through substitution, that

(7)

which furnishes the first n − 1 one-period forward rates.
The relation between spot yield, spot rate and forward rates, equa-

tion (7), can be combined with equation (2) to furnish a method for cal-
culating the present value, at t, of a single n-period future cash flow
based on a series of one-period forward rates

(8)

Since the present value of a coupon paying security is simply the
sum of the discounted present value of the cash flows that make up the
coupon payments and the payment of principal [see equations (la) and
(2a)], the analogy to equation (8) for determining the present value of a
coupon paying bond is

(8a)

Equation (8a) may be used to define multi-period forward rates.

Deriving Forward Rates from the Discount Function
The discount function provides a direct method for generating forward
rates. The one-period forward return n − 1 periods from t is obtained
through the following

(9)

1 R t n,( )+( )n

1 R t 1,( )+( ) 1 F t 1 1, ,( )+( ) 1 F t 1 2, ,( )+( )× …× 1 F t 1 n 1–, ,( )+( )××=

PV t n,( ) CF t n,( )
1 R t 1,( )+[ ] …× 1 F t 1 n 1–, ,( )+[ ]×

--------------------------------------------------------------------------------------------------=

PV t n,( ) CF t 1,( )
1 R t 1,( )+[ ]

--------------------------------=

CF t 2,( )
1 R t 1,( )+[ ] 1 F t 1 1, ,( )+[ ]×

----------------------------------------------------------------------------+

…+
CF t n,( )

1 R t 1,( )+[ ] … 1 F t 1 n 1–, ,( )+[ ]××
--------------------------------------------------------------------------------------------------+

1 F t 1 n 1–, ,( )+
d t n 1–,( )

d t n,( )
--------------------------=
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Equation (9) may be derived from earlier equations, or from the fol-
lowing argument that creates a synthetic forward position. For each
unit of cash delivered n periods from today, t, we pay d(t,n). We take a
long position in this zero. We also short d(t,n)/d(t,n−1) units of cash to
be delivered n − 1 periods from t. For this we receive d(t,n−1) times
d(t,n)/d(t,n−1), or simply d(t,n), units. There is no net change in our
cash position today. After n − 1 periods we pay out d(t,n)/d(t,n−1) and
after n periods receive one unit of cash. Thus the forward price per unit,
FP, to be paid n − 1 periods from now is

(9a)

where

The forward price then gives the forward one-period rate, n − 1
periods from t as

(9b)

Equating (9a) to (9b) results in Equation (9).

Term Structure in a Certain Economy
As discussed earlier, term structure models describe the evolution of inter-
est rates over time. Often, future interest rates are expressed in terms of
the future spot rate. If the future spot rate (or equivalently, the future rate
of return on a bond) is known, the future term structure of interest rates
may be found from the previously established inter-relationships between
the spot rate and the discount function or spot yield. In fact, it is this
relationship between the spot rate and the discount function that is used
to motivate the formulation of the term structure model described later
in this chapter as a function of the spot rate. As a precursor to a general-
ized term structure theory, we first discuss the ramifications for a term
structure in a certain economy.2

If the future course of interest rates is known with certainty, then
arbitrage arguments demand that future spot rates be identical to future

FP(t,1,n−1) = forward price of a one-period unit of cash n − 1 peri-
ods from now

2 In this context, “certain” refers to an economy with a lack of randomness, in other
words, a lack of uncertainty.

FP t 1 n 1–, ,( ) d t n,( )
d t n 1–,( )
--------------------------=

FP t 1 n 1–, ,( ) 1
1 F t 1 n 1–, ,( )+
------------------------------------------=
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forward rates. In the notation presented in equation (7), this is equiva-
lent to noting that

R(t + nP,1) = F(t,1,n) (10)

for n = 1, 2, 3, . . . and where P is the term of the period. If this condi-
tion were violated, say, for example,

F(t,1,n) > R(t + nP,1)

then the same arbitrage argument may be made as before: If we buy the
synthetic forward (this is a long position in a unit zero to be delivered n
+ 1 periods from today, t); and short d(t,n + 1)/d(t,n) units of cash to be
delivered n periods from today, t, no cash changes hands today. How-
ever, after n periods, we pay the forward price, FP,

to receive one unit of cash after n + 1 periods. Also, after n periods, at t
+ nP, we sell the one-period unit zero for a price of

We know we can do this since there is no uncertainty in the econ-
omy. If, as assumed, F(t,1,n) > R(t + nP,1), then after n periods the long
and short positions yield a positive net cash flow, or a riskless arbitrage,
of

after n periods with no uncertainty and with no net investment. Arbitra-
guers will exploit the imbalance of the n-period forward rate with the
spot rate n periods from now by continuing to buy the synthetic forward
until demand outstrips supply. In this scenario, the synthetic forward
price goes up, and the forward rate, F(t,1,n), goes down to R(t + nP,1)—
with predictable effect on d(t,n+1) and/or d(t,n). On the other hand, if
F(t,1,n) < R(t + nP,1), we may reverse our positions and the same argu-
ment carries through to show F(t,1,n) will increase to R(t + nP,1).

FP t 1 n, ,( ) 1
1 F t 1 n, ,( )+
--------------------------------=

1
1 R t nP 1,+( )+
-----------------------------------------

1
1 R t nP 1,+( )+
----------------------------------------- 1

1 F t 1 n, ,( )+
--------------------------------– 0>
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Using the no-arbitrage condition in a certain economy, equation
(10), in the present value expression from the implied forward-rate
expression, equation (8) (which always holds irrespective of assump-
tions about the economy), we have,

(11)

This means that the certain return of holding an n + 1 period zero
until maturity is the same as the total return on a series of one-period
bonds over the same period. Later we will discuss the various forms of
equation (11) from various qualitative term structure theories.

Given equation (11), we have, at time P (one period) later,

so we find that the single-period return on a long-term zero is

(12)

Since the term-to-maturity was not specified, equation (12) must be
true for zeros of any maturity. That is, the return realized on every dis-
count bond over any period is equal to one plus the prevailing spot rate
over that period. This will be expanded upon later in this chapter.

Alternatively, we can use our relation for the discount function in
Equation (1), noting

and

and restate equation (12) in terms of the discount function

(12a)

PV t n,( ) CF t n 1+,( )
1 R t 1,( )+[ ] 1 R t P 1,+( )+[ ]× …× 1 R t nP 1,+( )+[ ]×

-------------------------------------------------------------------------------------------------------------------------------------------------=

CF t n 1+,( )
1 R t n 1+,( )+[ ]n 1+

----------------------------------------------------=

PV t P+ n,( ) CF t n 1+,( )
1 R t P 1,+( )+[ ] … 1 R t nP 1,+( )+[ ]××

-----------------------------------------------------------------------------------------------------------=

PV t P+( )
PV t( )

------------------------- 1 R t 1,( )+=

PV t P+ n,( ) d t P+ n,( ) CF t n 1+,( )×=

PV t n,( ) d t n 1+,( ) CF t n 1+,( )×=

d t P+ n,( )
d t n 1+,( )
-------------------------- 1 R t 1,( )+=
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While these developments for the certain economy may appear triv-
ial and obvious, they serve as a guide for modeling the term structure
under uncertainty as well.

Term Structure in the Real World—Nothing Is Certain
In the real-world economy, the future course of interest rates contains
uncertainty. In attempting to deal with uncertainty, however, it would not
be inconceivable that a belief in the efficiency of the market would
prompt one to use the term structure and the relation between forward
rates and spot rates as indicators of expectation about the future. Indeed,
market efficiency states that prices reflect all available information bear-
ing on the valuation of the instrument. Equilibrium supply and demand
for fixed-income instruments reflect a market cleared consensus of the
economic future. As uncertainty represents a departure from this consen-
sus, the expected equilibrium offers a natural starting point for analysis.

Expectations Hypothesis
The expectations theory of the term structure of interest rates offers a
good starting point for dealing with an uncertain future. Actually, there
is a whole family of expectations theories. Broadly, the expectations the-
ory states that the expected one-period rate of return on an investment
is the same, regardless of the maturity of the investment. That is, if the
investment horizon is one year, it would make no difference to invest in
a one-year instrument, a two-year instrument sold after one year, or two
sequential six-month instruments.

The most common form of this statement uses equation (10) as the
basis for the theory. This is referred to as the unbiased expectations
hypothesis, which states that the expected future spot rate is equal to
the forward rate, or

for k = 0, 1, . . ., n − 1, and where E[⋅] is the expectation operator.
Using this relation, we find from equation (8) that the present value

in an economy characterized by unbiased expectations is

(13)

Therefore, the unbiased expectations hypothesis concludes that the
guaranteed return from buying a (n + 1) period bond and holding it to

E R t nP+ 1,( )[ ] F t kP+ 1 n k–, ,( )=

PV t n,( )
CF t n 1+,( )

1 R t 1,( )+[ ] 1 E R t P+ 1,( )[ ]+{ }× …× 1 E R t nP+ 1,( )[ ]+{ }×
------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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maturity is equivalent to the product of the expected returns from hold-
ing one-period bonds using a strategy of rolling over a series of one-
period bonds until maturity.

Alternatively, the return-to-maturity expectations hypothesis is based
on equation (11). Here we find that present value in such an economy is

(14)

The return-to-maturity expectations hypothesis assumes that an
investor would expect to earn the same return by rolling over a series of
one-period bonds as buying an (n + 1)-period bond and holding it to
maturity.

The last version of the expectations hypothesis that we will mention
(there are others) is the local-expectations hypothesis (or risk-neutral
hypothesis). This hypothesis is based on equation (12), or equivalently,
the discount-function based equation (12a). Under this hypothesis, the
expected rate of return over a single period is equal to the prevailing
spot rate of interest. Applying these expressions recursively gives

      (15)

Equations (13), (14), and (15) are clearly different in that the coeffi-
cient of the cash flow, CF(t,n+1), received n + 1 periods in the future is a
different expression in each case. Furthermore, by the principle from
mathematical analysis known as Jensen’s inequality, only one of the
expressions can be true if the future course of interest rates is uncertain.

In fact, in discrete time, we find that bond prices given by the unbi-
ased and return-to-maturity hypotheses are equal but less than that
given by the expectations hypothesis. Although the three hypotheses are
different, in discrete time, any of these hypotheses is an acceptable
description of equilibrium.

PV t n,( )
CF t n 1+,( )

E 1 R t 1,( )+[ ] 1 R t P+ 1,( )+[ ]× …× 1 R t nP+ 1,( )+[ ]×{ }
-------------------------------------------------------------------------------------------------------------------------------------------------------------=

PV t( ) E PV t P+( )[ ]
1 R t 1,( )+[ ]

----------------------------------=

E PV t 2P+( )
1 R t P+ 1,( )+[ ] 1 R t 1,( )+[ ]×

---------------------------------------------------------------------------------
 
 
 

=

CF t n 1+,( )=

E
1

1 R t 1,( )+[ ] 1 R t P+ 1,( )+[ ] …× 1 R t nP+ 1,( )+[ ]××
---------------------------------------------------------------------------------------------------------------------------------------

 
 
 

×
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In the next section, term structure modeling in continuous time is
developed. Equations (13), (14), and (15) have continuous-time ana-
logs, which (as in discrete time) are different from one another. This is
again due to Jensen’s inequality. Unlike in discrete time, however, only
the local expectations hypothesis is acceptable as a statement of equilib-
rium because the expected returns under each of these hypotheses are
not consistent with those implied in a general equilibrium.3

Preferred Habitat Hypothesis
Crucial alternatives to the expectations theory of the term structure of
interest rates are theories that add an element of risk when conferring
the expected rate of return for bonds of different maturities; that is, the
indifference assumption that was stated earlier no longer holds. If the
investment horizon is one year, it does make a difference whether to
invest in a one-year instrument, a two-year instrument sold after one
year, or two sequential six-month instruments. The preferred habitat
theory argues that we first must know the investment horizon to deter-
mine relative risk among bonds. In the simple example, the horizon is
one year. The one-year instrument is safest for this horizon. Under the
preferred habitat theory, the investor would require a higher rate of
return on both the two-year and six-month instrument.

Liquidity Preference Hypothesis
The liquidity preference theory can be considered a special case of the
preferred habitat theory. Here, it is held that investors demand a risk
premium as compensation for holding longer-term bonds. In addition,
since the variability of price increases with maturity, the risk premium
demanded by investors increases. As a special instance of the preferred-
habitat theory, the liquidity preference theory says that as all investors
have a habitat of a single period, the shortest-term bond is judged safest.

With each of these theories, one can assess their efficacy only in the
context of the general economy. Specifically, we assume that the econ-
omy is one in which investors have an inclination to consume, as well as
to invest (in fact, even in a diverse set of risky investments). With a spec-
ification of utility of consumption and wealth, as well as a formal
expression for risk aversion, the risk-based term structure theories can be
viewed in the context of markets. Given that risk-based term structure
theories can be viewed in the context of a defined market, the following
conclusions can be made.

3 See John C. Cox, Jonathan E. Ingersoll, Jr., and Stephen A. Ross, “Re-examination
of Traditional Hypotheses About the Term Structure of Interest Rates,” Journal of
Finance (September 1981), pp. 769–799.
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Term premiums are monotonic in maturity (or term). Interest-rate
risk is inherently intertemporal. That is, it is a multi-period phenomena,
in which an unexpected interest-rate change at any period affects all
future returns and risk compounds over time. The traditional notion of
preferred habitat seems difficult to reconcile with real markets. As it turns
out, the traditional notion omits the importance of risk aversion. As we
incorporate a varying need to hedge against interest-rate changes, the the-
ory converges to a more acceptable view of markets. The generalization
of these economic analyses has led to what has been called an eclectic the-
ory of the term structure that recognizes and accommodates the many
factors that play a role in shaping the term structure. Expectations of
future events, risk preferences, and the characteristics of a variety of
investment alternatives are all important, as are the individual preferences
(habitats) of market participants about the timing of their consumption.
It is this eclectic theory that we embrace in the following development of
the dynamic term structure discussed later in this chapter.

CONCEPTS IN TERM STRUCTURE MODELING IN
CONTINUOUS TIME

In this section we discuss how the earlier concepts of discount function, spot
rate, spot yield, and forward rate have their analogies in the continuous-
time domain. It will be seen that while the mathematics are slightly
more complex, the roles that each of these quantities play in the term
structure of interest rates remain unchanged.

In summary, the priced-based representation of the term structure,
or the discount function, facilitates both the mathematical formulation
of the problem and its subsequent solution. Once the term structure
equation is solved explicitly in terms of price, the price/yield equation
(in continuous time) is used to convert the term structure to its equiva-
lent representation in terms of yield.

Given the intertemporal nature of the term structure and the appar-
ent efficiency of the market to incorporate information, it is assumed
that the market acts instantaneously, and that a period in time is but an
instant. This is the underlying premise for continuous-time models in
economics and finance.

Traditional fixed-income analysis assumes that compounding occurs at
discrete points or over finite intervals, typically on a semiannual basis.
However, as the compounding period grows ever shorter, discrete com-
pounding is replaced by continuous compounding. We expand our original
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equation (2) for the present value (at t), PV(t,T), of a cash flow received T
years from today, CF(t,T), which is invested at the spot yield, R(t,T), to be

(16)

Equation (16) is the fundamental price/yield relationship for the
case of continuous compounding of a discount bond and is the direct
analog of the price/yield relationship shown in equation (2) for discrete
compounding.

Discount Function
For a pure discount bond that pays one dollar at maturity, CF(t,T) = 1. Let
P be the price of the pure discount bond. Thus equation (16) becomes

(17)

Combining the above with equation (1), which equates the price of a
discount bond to the discount function, we obtain

(18)

Equation (18) provides an expression for the relationship between
the discount function d and the spot yield R, and is the continuous-time
analogy to equation (3).

Spot Rate
In the previous section, the spot rate was defined as the one-period rate of
return. Under continuous compounding, the spot rate r is defined as the
continuously compounded instantaneous rate of return. Stated another
way, the spot rate is the return on a discount bond that matures in the
next instant. The spot rate is really an expression of the concept that a
discount bond with a specified term-to-maturity and yield is equivalent to
a series of instantaneously maturing discount bonds that are continuously
reinvested at a rate r until the final term T. This is discussed in the follow-
ing section.

Spot Yield
If the spot rate is a known function of time, then a loan amount W that
is invested at the spot rate r will grow by an increment dW that is given
by

PV t T,( ) CF t T,( )e TR t T,( )–=

P t T,( ) e TR t T,( )–=

P t T,( ) e TR t T,( )– d t T,( )= =
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(19)

where

To find the value of the loan W at maturity, integrate equation (19)

             (20)

If W is a discount bond, W(t) is equal to the present value P(t, T)
and W(t + T) is one. Equation (20) is rewritten as

(21)

From equation (17), the price P is expressed in terms of its spot
yield R. By equating (17) and (21), we obtain the following expression
for the spot yield in terms of the spot rate

(22)

Equation (22) is a general expression that always holds.
Another view of the relationship between the spot yield and the spot

rate is that instead of continuously reinvesting at the spot rate r for a
fixed maturity T to obtain the spot yield R, if the term-to-maturity
grows ever shorter, the spot yield R approaches the spot rate r “in the
limit.” r may be stated as

(23)

Graphically, the spot rate at t = 0 may be visualized as the yield corre-
sponding to the point at which the spot-yield curve intercepts the yield axis.

dW(t) = incremental increase in the value of the loan from time t
to time t + dt

W(t) = value of loan at time t
r(t) = spot rate at time t

dW t( ) W t( )r t( )dt=

Wd τ( )
W τ( )

-----------------
t

t T+

∫ r τ( ) τd
t

t T+

∫=

W t( ) W t T+( )exp r τ( ) τd
t

t T+

∫– 
 =

P t T,( ) exp r τ( ) τd
t

t T+

∫– 
 =

R t T,( ) 1
T
---- r τ( ) τd

t

t T+

∫=

r t( ) R t T, 0=( ) R t T,( )
T 0→
lim= =
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Forward Rate
The forward rate, F(t0,t) is the marginal rate of return for extending an
investment to an additional increment of term at t > t0. The forward
rate is defined by

(24)

Comparing the above notations for the forward rate with that in equa-
tion (4), note that the parameter “1” from the previous parameter set
(denoting one time period) is no longer present. In the continuous-time
domain, one time period collapses to just an instant.

Rearranging and applying Leibniz’s Rule, the above becomes

(25)

where s is the maturity date. The above equations relate the forward
rate to the spot yield R. As with the case of discrete compounding, the
forward rate may be expressed similarly in terms of the discount func-
tion d(t,T) or the spot rate r(t).

From equations (17), (18), and (25),

(26)

where ln[ ] is the natural logarithm.
Separately, from equations (22) and (24),

(27)

Under a certain economy, equations (22) and (27) show that the
spot rate needs to be equal to the forward rate to preclude arbitrage. In

R t T,( ) 1
T
---- F t τ,( ) τd

t

t T+

∫=

d
dT
------- TR t T,( )[ ] d

dT
------- F t τ,( ) τd

t

t T+

∫=

F t t T+,( )=
F t s,( )=

F t t T+,( ) d–
dT
-------ln d t T,( )[ ]=

r t( ) R t T,( )
T 0→
lim=

r t( ) 1
T
---- F t τ,( ) τd

t

t T+

∫T 0→
lim=

1
T
---- F t t*,( )T

T 0→
lim t t* t T+< <( )=

F t t,( )=
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the case in which the spot-yield curve R(t,T) (and consequently the term
structure) is defined, it follows that the spot rate needs to be equal to the
instantaneous forward rate over the term of the discount bond for equa-
tion (27) to hold true (see equation (7) for the analogy in the case of dis-
crete compounding).

Since R is the yield of a discount bond and the term structure of inter-
est rates is the set of spot yields as a function of maturity, equation (22)
defines the term structure when the evolution of the spot rate is a known
function of time. However, in general, the spot rate is not known; only the
current spot rate is known from the current spot-yield curve. Neverthe-
less, term structure theory expands the basic relationship that is shown in
equation (22), namely that the yield of a discount bond is a function of
the spot rate. This is discussed in more detail in the next section when the
spot rate assumes the form of a stochastic differential equation.

Term Structure in Continuous Time
As stated in the previous section, the term structure of interest rates
describes the relationship between the yields of default-free, zero-coupon
securities as a function of maturity. Consequently, the term structure
may be envisioned as a continuous set of yields for zero-coupon securi-
ties over a range of maturities.

Equation (18) describes the price/yield relationship for a single zero-
coupon bond of a given maturity. As the term-to-maturity T spans the
range of possible maturities within the term structure, the associated
spot yields are generated for each maturity point, i.e., R is a function of
the term T. Furthermore, for any one value of T, the spot yield will vary
as a function of the time t. In general, the spot yield R is a function of
the term-to-maturity T, the time t and the spot rate r [as shown by equa-
tion (22)]. R may be expressed as

(28)

Equation (28) describes the functional form of the term structure in
terms of the spot yield R. In order to describe the term structure com-
pletely, an equation is needed that mathematically specifies the form of
the relationship between the spot yield R and the term T over time t.

Such an equation for the term structure may be found by consider-
ing that the term structure may be expressed equivalently in terms of the
prices of discount bonds (i.e., through the discount function). Thus
equation (17) may be rewritten as

R R r t T, ,( )=
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(29)

where ln[ ] is the natural logarithm.
If an expression for P(r,t,T) can be found that defines the value of a

zero-coupon bond at different points in time and for varying terms T,
then the term structure of interest rates has been defined fully. Alterna-
tively, equation (29) provides an equivalent description of the evolution
of the term structure over time in terms of the spot yield.

Next, a methodology is described that allows for the derivation of a
formula for P(r,t,T), hence arriving at a model of the term structure of
interest rates.

TERM STRUCTURE MODEL

In this section we review four fundamental principles that guided the
development of the term structure model:

 ■ “General”-equilibrium model
 ■ Arbitrage-free term structure
 ■ Continuous-time/continuous-state approach
 ■ Generality of the model

These four principles not only provide an elegant mathematical formu-
lation of the term structure of interest rates, but also one that is applica-
ble to a number of different market sectors.

“General” Equilibrium Model
General equilibrium models of the economy describe the basic workings of
the macro economy as a function of a given “state variable.” This implies
that the production processes and assets that constitute the economy are
determined by the value of the state variable. As one of the definitive
works on term structure theory, Cox-Ingersoll-Ross (CIR) showed that
this general equilibrium model of the economy may be used to derive a
model for the term structure of interest rates in terms of this state vari-
able.4 Such an approach is considered to be a general equilibrium model of
interest rates in that the interest-rate model is a consequence of a general
economic model.

4 John C. Cox, Jonathan E. Ingersoll, Jr., and Stephen A. Ross, “A Theory of the
Term Structure of Interest Rates,” Econometrica (March 1985), pp. 385–407.

R r t T, ,( ) 1
T
----– ln P r t T, ,( )[ ]=
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In contrast to general equilibrium models, “partial equilibrium”
models assume a particular form of the interest-rate process as a given.
This type of approach does not require the particular interest-rate process
to be a result of some greater underlying theory. Examples of partial equi-
librium models are those of Vasicek,5 Ho and Lee,6 and Black-Derman-
Toy,7 among others. In addition, partial equilibrium models are cali-
brated exogenously to the current term structure of interest rates. With-
out this exogenous information, partial equilibrium models cannot
quantify the term structure.

On the other hand, general equilibrium models theoretically can
specify a term structure independently of any bond-market information.
It has been observed though that such a term structure (as provided by
earlier general equilibrium models) may not be consistent with the
entire market term structure. For this reason and due to the difficulty
that some term structure practitioners have had in quantifying the
parameters in the CIR model, many implementers of term structure
models have pursued the development of partial equilibrium models.

We approached these issues in the development of this term structure
model in a variety of ways. While the model described herein is not purely
a general equilibrium model, we began with the basic CIR model as a
starting point, and then further generalized that model’s stochastic interest-
rate process. Furthermore, we developed an approach for the specification
of CIR-type model parameters such that the derived term structure was
consistent with the observed market term structure. Thus drawing upon a
cornerstone in term structure theory, we developed an extension to the
CIR model that can be readily applied to the financial marketplace.

Arbitrage-Free Term Structure
One underlying principle that the term structure model under discussion
shares with many of the above mentioned references is that the term struc-
ture is “arbitrage free.” This concept is an extension of the arbitrage-free
principles found in the Black-Scholes’ options theory for commodity
and equity markets, and states that the term structure observes a given
relationship among its constituent parts and that purely arbitrary yield-
curve shapes do not occur. Given today’s yield curve, subsequent yield

5 Oldrich Vasicek, “An Equilibrium Characterization of the Term Structure,” Jour-
nal of Financial Economics (1977), pp. 177–188.
6 Thomas S.Y. Ho and Sang B. Lee, “Term Structure Movements and Pricing Interest
Rate Contingent Claims,” Journal of Finance (December 1986), pp. 1011–1029.
7 Fischer Black, Emanuel Derman and William Toy, “A One Factor Model of Interest
Rates and its Application to Treasury Bond Options,” Financial Analysts Journal
(January/February 1990), pp. 33–39.
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curves are assumed to evolve in a “rational” manner that precludes risk-
less arbitrage. This indicates that the prices of bonds defining the yield
curve move in such a way that it is not possible to create a portfolio of
securities that always will outperform another portfolio without entail-
ing any risk or net investment; in other words, there is no “free lunch.”
Appendix B shows that the arbitrage-free principle plays an important
role in the mathematical pricing of fixed-income securities.

Continuous-Time/Continuous-State Approach
Another distinguishing feature of this term structure model is the strict
adherence to the “continuous-time/continuous-state” approach to the
modeling of stochastic processes. This assumes that interest rates and
bond prices move in a continuous fashion over time, rather than in dis-
crete jumps. Thus a spot-yield curve may be found for any point in time
during the life of a bond, rather than only at specific points (such as a cou-
pon payment date). This concept is consistent with the notion of a contin-
uous yield curve and allows for the use of continuous stochastic calculus.

Continuous Probability Distributions
Furthermore, the generality of the transitional probability density func-
tion, as a complete specification of the statistical properties of the rate
process, is maintained throughout the term of the bond. This is in con-
trast to the common approach of describing individual sample paths or
scenarios, as found in Monte Carlo approaches to security analysis. The
ability to extend the analyses to compound, derivative instruments is
unimpaired through the use of this transitional probability density func-
tion. Moreover, the continuous-time/continuous-state approach avoids
the computational issues associated with the number of sample paths
analyzed. Since the complete specification of the statistical properties is
maintained, it is as if an infinite number of sample paths are run.

Numerical Solution Technique
The computer numerical solution technique that accompanies the continuous-
time formulation is one that is well known in the engineering and physical
sciences as the “Crank-Nicholson” finite-difference method for the solu-
tion of partial differential equations (PDEs). This solution technique has
been used extensively in the study of aerodynamics and fluid flow, and has
the flexibility to focus its computational efforts in areas that require
greater numerical precision, such as the time period surrounding an option
exercise period. This is in contrast to binomial interest-rate lattices, which
are constrained to jump, for example, in six-month intervals, such as in
some commercially available applications.
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Generality of the Model
The formulation and implementation of the term structure model needs
to be completely general so as to be applicable across a broad range of
fixed-income markets in a straightforward and consistent manner. For
example, once the value of the fixed-income instrument is found, the
value of its derivative (such as its futures contract) also may be found.
Furthermore, it is possible to value the quality and delivery options
within the bond futures contract. These effects also can be incorporated
when valuing an option on the bond futures contract.

General Assumptions
The analytical model that describes spot-rate movement is a one-factor,
mean reverting, diffusion process model. The model assumes:

1. The evolution of interest rates is a continuous process and may be
described by a single variable, i.e., by the instantaneous spot rate,
which is the return on an investment over an infinitesimally short
period of time. This allows for the use of continuous-time mathemat-
ics, which requires greater technical sophistication, but which increases
the flexibility of the mathematical modeling process.

2. The model assumes that interest rates move in a random fashion,
which is known as Brownian motion or a Wiener process. The Weiner
process has been used in the physical sciences to describe the motion
of molecular particles as they diffuse (or spread) over time and space.

3. The term structure of interest rates is assumed to be represented by a
Markov process, which states that the future movement in interest
rates depends only on the current term structure and that all past
information is embodied in the current term structure.

4. The term structure is arbitrage free in that a portfolio of securities
derived from the term structure is constrained to have an instanta-
neous rate of return that is equal to the risk-free rate. Future move-
ments in interest rates are similarly constrained so that the possibility
of riskless profits are precluded. This implies that there are a suffi-
cient number of sophisticated investors who will take advantage of
any temporary mispricings in the marketplace, thus quickly diluting
any arbitrage opportunities that exist.

   Technically, an arbitrage-free term structure indicates that a
portfolio of securities derived from the term structure may be con-
structed such that the portfolio instantaneously returns the risk-free
rate (see Appendix B). Since the above holds true for any arbitrary set
of maturities in this portfolio of securities, it is said to be true for all
maturities. This indicates that all securities that comprise the term

5-Audley/Chin-TermStructModel  Page 120  Thursday, August 29, 2002  10:00 AM

http://abcbourse.ir/


Term Structure Modeling 121

structure are related in a common fashion. This commonality is
expressed through the concept of the market price of risk, which is the
incremental return over the risk-free rate that is required for incurring
a given amount of additional risk. In this context, risk is measured by
the variance of a bond’s rate of return. A result of the arbitrage-free
nature of the term structure is that all securities share the same market
price of risk. As we demonstrate in Appendix B at the end of the chap-
ter, the risk premium is one component of the market price of risk.

5. The price of a default-free, zero-coupon (discount) bond at any point
in time continuously depends on the spot rate, time, and maturity of
the bond. This models the interaction between the bond’s price and
the probabilistic movement in the spot rate. This is an extension of
the point discussed earlier in this chapter that stated the yield of a dis-
count bond is a function of the spot rate.

6. The market is efficient in that all investors have the same timely
access to relevant market information. Furthermore, investors are
rational and there are no transaction costs.

Spot-Rate Model
As a result of assumptions 1 through 3 above, the equation that describes
the diffusion process for the movement in the spot rate is given by equa-
tion (30)

(30)

where

Mean Reversion
Equation (30) states that the rate r changes with respect to time and the
degree of randomness. The first term on the right-hand side of equation
(30) states that the “drift” in the spot rate over time is proportional to
the difference between the rate r and θ. As r deviates from θ, the change
in r is such that r has a tendency to revert back to θ, a feature that is
known as “mean reversion.” The presence of mean reversion imposes a

r = spot rate, the instantaneous rate of return
dr = infinitesimal change in the spot rate
k = mean reversion constant
θ = “target” spot rate as a function of time
dt = infinitesimal change in time
σ = volatility of r
dz = infinitesimal change in the normal random variable z

dr k θ r–( )dt σ rdz+=
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centralizing tendency such that rates are not expected to go to extremely
high or low levels. In addition, mean reversion precludes the existence
of negative interest rates in our interest-rate model, given that the initial
interest rates are positive.

Appendix B presents a closed-form expression for θ as a function of
time. Note that θ is not assumed to be constant, which is usually the
case for the traditional CIR approach.

Effect of Randomness
The second term on the right-hand side of equation (30) states that the
contribution to the change in r due to randomness is driven by move-
ments in the random variable z. The variable z is normally distributed
with a mean of zero and a variance that is proportional to time. This
indicates that the amount of random “noise,” as represented by the
variable z, may be any positive or negative value, but that its expected
value is zero. In addition, as time passes, the variance increases so that
the “amplitude” of the noise also increases (see Appendix A).

The variables σ and r, which are coefficients of dz in equation (30),
show that the change in r also depends on the level of volatility and
interest rates. The variable z has its own defined level of uncertainty so
that as volatility and rate change, the overall degree of uncertainty is
influenced by the level of these variables.

Endogenous Parameterization (Tuning the Model)
Equation (30) describes the rate in terms of the parameters k, σ, and θ.
The volatility parameter σ is specified externally so that it reflects either
the historical level of volatility or the volatility that is currently present
in the market. Secondly, θ reflects the current term structure (see Appen-
dix B) such that the future movements in r are influenced by today’s term
structure. Finally, the mean reversion constant k determines the speed of
adjustment of r back to θ. In order for the interest-rate model to be of
any utility, the parameter k is chosen to be consistent with the observed
market prices of bonds comprising the current yield curve, while θ is
derived directly from the current yield curve. This process of determin-
ing k and θ “parameterizes” the model to the observed yield curve.

There are several variations of equation (30) existing within the aca-
demic literature that appear to be similar to equation (30).8 However,
the details surrounding the functional form of each term in equation

8 See K.C. Chan, G.A. Karolyi, F.A. Longstaff, and A.B. Sanders, “An Empirical
Comparison of Alternative Models of the Short-Term Interest Rate,” Journal of Fi-
nance (July 1992), pp. 1209–1227.
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(30) and the associated parameterization process can result in very dif-
ferent models. The specification of parameters for this term structure
model is driven by the requirement to be able to precisely reprice the set
of securities that constitute the reference yield curve. A properly cali-
brated term structure model needs to be able to define a bond whose
cash flow characteristics match those of an on-the-run issue exactly and
then have the price of that constructed bond match exactly the market
price of the Treasury issue. By repeating this process for each of the on-
the-run issues, the mean reversion constant and the risk premium that
are appropriate over the range of reference issues may be quantified.

As a technical side note, the term structure model needs to satisfy
internal consistency checks, and the parameter specification process
plays a part in the internal system for checks and balances. For the set
of chosen parameters, the price furnished by the term structure model—
as the solution to a PDE—needs to be equal to that provided by apply-
ing the discount function to the cash flows of the specific on-the-run
issue, as explained earlier in this chapter. Thus the discount function is a
direct means of verifying the results of the term structure model. In fact,
the PDE may be decomposed into two coupled ordinary differential
equations (ODE) in the absence of any embedded options. Thus prices
obtained from the PDE, ODE, and discount-function approaches all
need to be identical.

Calculation of the Spot Rate
The solution to equation (30) is obtained through computer numerical
solution techniques and accounts for the current value of the spot rate
(as an initial condition) and its level of volatility. As time moves for-
ward, the solution expresses the probable distribution of the spot rate as
the spot rate propagates through time. Thus, at any point in time, it is
possible to calculate the probability distribution of the spot rate. It was
discussed previously that the price of a bond depends on the spot rate so
that the spot-rate probability distribution is also the probability distri-
bution for the bond price. This is useful in calculating the probability
that an embedded call or put option will be exercised, which is the
probability that the price of a particular bond is greater than or less
than, respectively, the specified strike price at exercise.

The calculation of the probabilities is made possible by assuming a
specific mathematical form for the random variable z, or a Wiener pro-
cess. Generally, a probability distribution function is described by its
mean and variance as functions of time. If these quantities are known,
then the probability of different spot rates is known. The Wiener process
assumption states that the statistical variance for the random variable z
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varies with the length of time under consideration. As time increases, the
variance of z also increases. The known change in the variance of z is
subsequently translated (in a known fashion) to the change in the vari-
ance of the rate r, which may be used to obtain the desired probability in
terms of r.

Bond-Price Valuation Model
As a consequence of assumptions 4 and 5 (the price of a default-free dis-
count bond depends continuously on the spot rate), it can be shown that
the price of a discount bond of term T is expressed as (see Appendix B)

(31)

where

Calculation of the Term Structure
Equation (31) is a PDE whose solution is obtained through a numerical
finite-difference technique. The solution gives the price P of the bond for
different times and spot rates, and can be visualized as a three-dimensional
surface, for which the height of the surface is the price of the bond and
the location of the point (i.e., longitude and latitude) is given by the
time and spot rate. The solution takes into account that the bond’s price
is par at maturity, regardless of the level of interest rates. As the solu-
tion steps back from the maturity date, the price of the bond may be cal-
culated for varying levels of the spot rate and the familiar price/rate
graph may be drawn for this time-step.9

As the solution process continues backward from maturity to the
present day, the theoretical price corresponding to today’s spot rate can

P = price of zero-coupon bond for time t and rate r
∂P/∂t = partial derivative of price with respect to time
∂P/∂r = partial derivative of price with respect to rate
∂2P/∂r2 = second partial derivative of price with respect to rate
λ = “risk premium,” or the variable that represents the addi-

tional return over the risk-free rate for holding a longer-
term instrument. This is determined from the current term
structure.

9 Not all bond prices are equally likely to occur since interest-rate movements and
the probabilities associated with these movements are described by equation (30).

∂P
∂t
------ rP k θ r–( ) λσr+[ ]∂P

∂r
------– 1

2
---σ2r∂2P

∂r2
---------–=
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be calculated. Once the price behavior of a bond is known, the value of
an option on that bond may also be calculated.

Since the solution to equation (31) furnishes the price as a function
of time and rate, equation (29) of the previous section may be solved to
provide the zero-coupon yield for a bond with the term-to-maturity T.
As the term T is varied, the entire term structure may be obtained.10

MODEL APPLICATIONS

We conclude this chapter with a description of the application of the
term structure model developed in the previous section in the valuation
of fixed-income securities. For the simple case of non-callable bonds,
many term structure models can be used to determine value. In fact, the
spline-fit discount function is a very straightforward method of calculat-
ing the value of such a bond. However, when option embedded bonds or
compound instruments are considered, the PDE approach is required to
reflect the specific nature of the option features. As this chapter demon-
strates, the PDE based term structure model is but the first step that
leads to a greater assortment of analytical financial tools. Applications
to bonds with embedded options and interest rate derivatives are pro-
vided in other chapters.

Zero-Coupon Bonds
Most yield curves, such as the U.S. Treasury curve, are expressed in
terms of the yields of coupon bearing bonds, not zero-coupon bonds.
Thus a procedure is required to translate the current-coupon yield curve
to an initial zero curve (i.e., the current term structure) expressed in
terms of a spot-yield curve. One of several methods may be employed.11

In summary, a reference set of securities is chosen to represent the yield
curve, and each of the cash flows from this set of securities is treated as
a zero-coupon bond that is part of the term structure. Since each of the
reference securities has a known market price, the price/yield relation-

10 The obtained term structure, in general, can take a variety of shapes. If the current
spot rate is below the current value of the long-term rate, θ, the obtained term struc-
ture will be upward sloping. If the current spot rate is substantially above the long-
term rate, the obtained term structure will be inverted to downward sloping. For
spot-rate values in between, the term structure will be humped, displaying both up-
ward sloping and downward sloping segments. Thus an attractive feature of the term
structure model is the ability to obtain term structure specifications that are consis-
tent with those that have been observed historically.
11 See Vasicek and Fong,“Term Structure Modeling Exponential Spline.”
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ship, along with a curve fitting process, is applied sequentially to each of
the cash flows to derive the current term structure. This process estab-
lishes the set of initial conditions necessary to predict the evolution of
the term structure.12

If the actual zero-coupon yields are compared to the theoretical zero-
coupon yields, then the richness or cheapness of the zero-coupon market
may be gauged. Since the discount function may be constructed from any
reasonable set of reference bonds, if the reference bonds consisted of off-
the-run Treasury issues that are commonly stripped and/or reconstituted,
then the corresponding theoretical zero curve should be indicative of the
shape and level of the market strip curve.

Additionally, as the Treasury curve flattens or steepens, the theoreti-
cal zero curve changes accordingly to reflect the new shape of the Trea-
sury curve. Consequently, as the Treasury curve steepens or flattens, the
degree of anticipated yield-spread widening or tightening in the zero
market may be estimated.

Coupon Paying Bonds
While our discussion thus far applies mainly to the price of a zero-coupon
bond, it is more common to encounter coupon paying bonds. To value
coupon paying bonds, we simply sum the present values of each of the
coupon payments to determine the price. As discussed earlier, each cou-
pon is treated as an individual zero-coupon bond.

Determination of the Theoretical Fair Value
Once the term structure is defined, it may be used to value any collection
of cash flows and serves as the standard of fair value. The theoretical
price of a security that is calculated in this manner may be compared to
its actual market price. Any difference in price that results indicates
whether the security is rich or cheap relative to its fair value. If the market
price is equal to the fair value, then the security is said to be fairly priced.

Generally, Treasury securities are chosen to represent the basis for
fair value and most securities (such as corporate and government-
agency debt obligations) are cheap to Treasuries. However, if there are a
sufficient number of securities from a particular sector or issuer, these
issues may be used as the reference set of securities and a new yield
curve may be defined to be the standard of fair value. Thus corporate,
agency, or municipal debt issues may be compared to their own family
of securities or to their own sector to determine their relative value
within the specified sector.

12 See the discussion in an earlier section under discount function.
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Determination of Par-Coupon and Horizon Yield Curves
A par-coupon yield curve is a theoretical yield curve comprised of par
priced bonds along the maturity spectrum. Each of these par priced
bonds is constructed from the same discount function, which in turn is
derived from a specified set of reference bonds. Since the discount func-
tion is defined continuously at different maturity points and cash-flow
dates (via a spline-fitting procedure, for example), the par-coupon bonds
corresponding to these same points may be determined.

The procedure for constructing a par-coupon bond involves an iter-
ative process in which an initial coupon is assumed. For a given matu-
rity date and associated coupon-payment dates, the cash flows and cash-
flow dates are known for the assumed coupon level. The present value
of each of the cash flows is found through the discount function, and the
sum of the present values is compared to a price of par. The coupon
then is varied until a par priced bond is found. The process may be
repeated for as many maturity points as desired to construct an entire
par-coupon yield curve.

A par-coupon yield curve is helpful in pricing bonds with off-the-run
maturities. Often the question arises as to what exactly is the comparable
Treasury yield when pricing off-the-run bonds. Depending on the fixed-
income market sector, the comparable Treasury yield may be that of a
specific Treasury note, or it may be an interpolated yield. The par-coupon
curve provides a more technically rigorous means of calculating the inter-
polated yield, as opposed to a simple straight-line interpolation scheme.

Another application of the concept of the par-coupon yield curve is
the “horizon yield curve,” the par-coupon yield curve for a future hori-
zon date. Since the discount function may be determined as a function
of time, the corresponding horizon yield curves at various points in time
also may be found. The horizon yield curve is one way to help visualize
how the present yield curve may evolve in the future in an arbitrage-free
environment. (Of course, as new information is incorporated into the
marketplace as time passes, the actual yield curve may deviate from the
horizon yield curve. However, a horizon yield curve may still be calcu-
lated that reflects particular views about the future movements in both
short-term and long-term rates.)

Yield-Curve Shocks and Shifts
The shape of the yield curve is governed by exogenous (real-world) fac-
tors. As the Federal Reserve alters its monetary policy, or as the inflation
outlook changes, the yield curve responds accordingly. These perturba-
tions to the curve can be characterized as “shocks” to short-term rates
and as “shifts” to long-term rates. A shock can occur when there is a
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sudden and unexpected event that causes short-term rates to jump, even
though the overall economic fundamentals have not changed.

The clearest example of a shock is the Crash of 1987, during which
investors fled to the safety of the Treasury market. During October 19,
short-term rates dropped by approximately 90 to 100 basis points as
investors sought a temporary safe haven. At the same time, long-term
rates fell by about 20 to 30 basis points. Since the Crash was a market
phenomenon, rather than an altering of economic fundamentals, it is
characterized as a shock to the system. (This is described mathemati-
cally within the term structure model as a change to the initial condition
of the differential equation, where the differential equation remains the
same. The solution to the differential equation shows how the entire
yield curve responds to a shock in short-term rates.)

A shift in the yield curve results from a change in the economic
landscape where Federal budgetary concerns or inflation outlooks can
affect the view on long-term interest rates. (In contrast to a shock, the
term structure model represents a shift as a re-specification of the
parameters to the differential equation, while the initial condition has
remained unchanged. The most general situation can consist of a combi-
nation of shocks and shifts.)

The basic premise underlying the shocked and/or shifted horizon
yield curve is that the curve evolves in an arbitrage-free manner as pre-
scribed by the term structure model despite alterations to the curve.
Thus, even though a shock or a shift has occurred, the entire yield curve
responds in such a way as to preclude arbitrage. As a result of different
combinations of shocks and shifts of varying magnitudes, a series of
horizon yield curves can be found for different yield-curve steepening
and flattening scenarios.

SUMMARY

A continuous-time model of the term structure of interest rates repre-
sents a state-of-the-art approach in the valuation of fixed-income instru-
ments. The term structure model addressed in this chapter expands
upon the well known Cox-Ingersoll-Ross model, and is used to analyze
a broad range of securities markets, such as futures and futures options,
sinking-fund bonds and floating-rate notes, and caps and floors. In this
chapter we introduced the basic framework for the analysis of debt
securities, but the extension of the basic theory allows for the analysis
of OTC options, floating-rate notes, delivery, and timing options within
futures contracts and other derivative securities.
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APPENDIX A: ITO’S LEMMA

Ito’s Lemma is a powerful tool that is often used in stochastic calculus and
term-structure theory. The following shows the derivation of this formula,
which is based on the extension of basic concepts in calculus. Appendix B
makes use of these results in the derivation of the price equation (31).

Let P be a function of the two variables r and t expressed as the fol-
lowing

(A.1)

An application of Taylor’s Theorem to P furnishes

(A.2)

Let r be a function described by the following

(A.3)

where dz is a Weiner process such that

(A.4)

and ε is normally distributed with a mean of zero and variance of one.
With substitution of equation (A.4) into (A.3) and squaring

(A.5)

To evaluate equation (A.5), we use Chebyshev’s inequality

or

(A.6)

P P r t,( )=

dP ∂P
∂r
------dr ∂P

∂t
------dt 1

2
---∂2P

∂r2
--------- dr( )2 1

2
---∂P2

∂t2
--------- dt( )2 ∂2P

∂r∂t
-----------drdt+ + + +=

higher order terms+

dr a r t,( )dt b r t,( )dz+=

dz ε dt=

dr( )2 b2ε2dt higher order terms in dt+=

Pr x u– ε>{ } σ2

ε2
------≤

Pr dr2 E dr2( )– ε>{ } Var dr2( )
ε2

-----------------------≤
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The expected value of (dr)2 is given by

(A.7)

The variance of ε is one. Therefore, an alternate expression for the
variance yields

Since E[ε] = 0,

(A.8)

equation (A.7) becomes

(A.9)

The variance of (dr)2 is given by

(A.10)

For a variable y, the variance of cy, where c is a constant, is

(A.11)

Applying equation (A.11) to (A.10),

(A.12)

Since the variance of (dr)2 is of higher order, it can be neglected so
that the variance is, in effect, zero.

Substituting for the expected value and variance of (dr)2 into (A.6)
gives

and

E dr2( )[ ] E b2ε2dt( ) b2 dt( )E ε2( )= =

E ε2( ) E ε( )[ ]2– 1=

E ε2( ) 1=

E dr( )2[ ] b2dt=

Var dr( )2[ ] Var b2ε2dt( )=

Var cy( ) c2Var y( )=

Var dr( )2[ ] b4 dt( )2Var ε2( ) 0 dt2( )= =

Pr dr2 E dr2( )– ε>{ } 0 dt2( )
ε2

----------------≤
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(A.13)

Substituting Equation (A.13) into (A.2) and neglecting terms higher
than first order in dt, Equation (A.2) becomes

(A.14)

Equation (A.14) is Ito’s Lemma. Substituting equation (A.3) into the
above,

which yields

(A.15)

Equation (A.15) may also be expressed as the following

(A.16)

where

(A.17)

(A.18)

The parameters µ and ρ are the mean and standard deviation,
respectively, of the instantaneous rate of return on a discount bond.
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APPENDIX B: DERIVATION OF THE PRICE EQUATION

Equation (30) describes the process for the propagation of the spot rate
and is given by

(B.1)

Comparing the above with the general equation (A.3), it is seen that

(B.2)

(B.3)

Equation (A.15) becomes

(B.4)

To apply the principal of an arbitrage-free term structure, consider
equation (A.16).

(B.5)

Any security Wi with maturity si is subject to the same relationship
(B.5) such that

(B.6)

Consider a portfolio W consisting of owning an amount of W2 and
shorting an amount W1 such that

(B.7)

where

(B.8)

and
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(B.9)

Then

Applying equation (B.6), the above becomes

(B.10)

Since the stochastic element dz is not present in equation (B.10), the
rate of return on the portfolio W is equal to the riskless rate r. Therefore
equation (B.10) may be written as

Thus

This gives the following relationship

and

(B.11)

Since the maturities s1 and s2 were chosen arbitrarily, the above is
true for any maturity s. Therefore, the term
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is not a function of maturity and may be written as

(B.12)

where q(t, r) is the market price of risk.
Applying separation of variables, choose q(t, r) to be the following

(B.13)

where λ(t) is the risk premium which can be shown to be

(B.14)

(As the time, t, approaches the maturity, s, the risk premium decreases
toward zero, which reflects the decreasing risk associated with shorter-
term instruments.) Equation (B.12) is rewritten as

(B.15)

This states that the expected return of a bond is equal to the riskless
rate plus another term related to the risk premium.

With equations (A.18) and (B.3), the above becomes

(B.16)

Substituting the above into equation (B.5), (B.5) becomes

Equating the coefficients of dt between the above and equation (B.4),
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subject to the boundary condition

P(r, s) = 1 (B.18)

This completes the derivation of equation (31).
Finally, if we assume a separation of variables for P(r,t) of the form 

(B.19)

it can be derived that the “target” spot rate, θ, of the form

(B.20)

(B.21)

will provide a solution to equation (31) that will exactly reprice the ref-
erence set where the discount function d(t0,T) and the forward rates
F(t0, t0 + T) are derived from the reference set as described in the body
of this chapter using spline functions. Furthermore, this property is true
for all volatilities when the risk premium of equation (B.14) is used.
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waps are increasingly used by governments, financial intermediaries,
corporations, and investors for hedging, arbitrage, and to a lesser

extent, speculation. Swaps are also used as benchmarks for evaluating
the performance of other fixed-income markets, and as reference rates
for forecasting.

Swaps offer an operationally efficient and flexible means of trans-
forming cash flow streams. The swap market has little or no government
regulation, and provides a high degree of privacy. The swap market’s
liquidity, depth, and high correlation with fixed-income products, other
than plain vanilla government bonds, render its derived term structure a
fundamental pricing mechanism for these products and a relevant
benchmark for measuring the relative value of different fixed-income
products.1

The role of the swap term structure as a relevant benchmark for
pricing and hedging purposes is expected to increase as government fis-
cal situations improve. An improved fiscal situation reduces the size of
government debt programs, in effect decreasing the liquidity and effi-
ciency of government debt markets. Furthermore, the financial markets

1 For correlations of swap rates and other fixed-income rates for the U.S. market, see
M. Fleming, “The Benchmark U.S. Treasury Market: Recent Performance and Pos-
sible Alternatives,” FRBNY Economic Policy Review (April 2000).

S
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138 INTEREST RATE AND TERM STRUCTURE MODELING

crisis in the fall of 1998 reinforced the “flight to quality” phenomenon,
where spreads between governments’ issues and other fixed-income
securities widened substantially under adverse market conditions,
thereby calling into question the role of the government market as a rel-
evant benchmark for nongovernment issues. The swap term structure
again emerges as a potential substitute.

With the increased importance of the swap market, practitioners
recognize the importance of a consistent and computationally efficient
swap term structure for marking to market financial transactions; mark-
ing to market is the practice of valuing an instrument to reflect current
market conditions. While the general framework for the construction of
the swap term structure is widely known, the derivation details are
vague and not well documented. This chapter attempts to bridge this
gap by carefully covering all angles of the swap term-structure deriva-
tion procedure while leaving enough flexibility to adjust the constructed
term structure to the specific micro requirements and constraints of each
primary swap market.

Marking to market fixed-income portfolios is instrumental for trad-
ing, accounting, performance valuation, and satisfying inter-institution
collateralization requirements. The current methodology in capital mar-
kets for marking to market fixed-income securities is to estimate and
discount future cash flows using rates derived from the appropriate term
structure. The swap term structure is increasingly used as the founda-
tion for deriving relative term structures and as a benchmark for pricing
and hedging.

The first section describes the motivation for using the swap term
structure as a benchmark for pricing and hedging fixed-income securi-
ties. A swap term-structure derivation technique designed to mark to
market fixed-income products is then described in detail. Finally, differ-
ent aspects of the derived swap term structure are discussed.

THE SWAP CURVE ADVANTAGE

The swap market offers a variety of advantages. It has almost no gov-
ernment regulations, making it more comparable across different mar-
kets; some sovereign issues offer a variety of tax benefits to domestic
and/or foreign investors, making government curve comparative analy-
sis across countries latently inconsistent. The swap market is an increas-
ingly liquid market, with narrow bid-ask spreads and a wide spectrum
of maturities. The supply of swaps is solely dependent on the number of
counterparties wishing to transact at any given time. No position in an
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underlying asset is required, avoiding any potential repo “specials”
effects.2 Given the liquidity and large size of the swap market, new
swaps with standard maturities are issued daily, keeping a constant fore-
cast horizon, mitigating any potential coupon effects; bonds with high
coupons tend to have lower yields to maturity than bonds with low cou-
pons.3 The fungibility of swaps also prevents swaps with similar cash
flows from trading at substantially different rates, contributing to mar-
ket efficiency.

Swaps have similar credit-risk properties across countries, making
them more comparable than the government term structure. Govern-
ment debt is considered risk-free; however, governments entail different
credit-risk qualities across countries. Credit risk is embedded in the
swap curve as swaps are based on the balance sheet of the banking sec-
tor (see Exhibit 6.1 for inputs). In addition, swap rates are highly corre-
lated with yields on other fixed-income securities, even under adverse
market conditions, making swaps latently a better hedging vehicle than
government issues. Other fixed-income securities include agency debt,
corporate debt, and mortgage-backed securities.

Swap prices are frequently quoted as a spread over government
issues, therefore serving as a rough indicator of credit risk of the bank-
ing sector. A swap spread is the difference between the fixed rate on an
interest rate swap contract and the yield on a government bond with an
equivalent tenor. The fixed swap rate is the rate that equates the present
value of the swap to zero. Quoting the swap curve as a spread over the
government curve can be unreliable, as there is a maturity mismatch and
coupon effect between the different quoted government notes and their
corresponding swap issues. Swap rates should be quoted directly off the
swap market. Quoting the swap rate as a spread over government issues
is common mainly in Anglo-Saxon swap markets.

The most prominent impediment to swap market liquidity is swap
counterparty credit exposure, which is balance-sheet intensive, in that it
is a bilateral contract. The risk is the potential loss to a counterparty of
the present value of a swap position if a swap party defaults. Therefore,
parties to a swap transaction must be confident in the credit quality of
their swap counterparty. A variety of credit-enhancement mechanisms
have been developed to somewhat reduce this potential credit exposure.

2 A repo transaction is the borrowing of money by selling securities to a counterparty
and buying them back at a later date at a pre-agreed price. The repo rate is the inter-
est rate embedded in a repurchase agreement. Repo “specials” carry different rates,
thereby introducing inconsistencies to the derived term structure, such as the govern-
ment term structure.
3 A.M. Malz, “Interbank Interest Rates as Term Structure Indicators,” Federal Re-
serve Bank of New York (March 1998).
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140 INTEREST RATE AND TERM STRUCTURE MODELING

Some of the mechanisms include the use of credit-enhanced subsidiaries,
credit derivatives, posting of collateral, recouponing, and an automatic
swap unwind clause triggered by a credit event.

EXHIBIT 6.1  Swap Inputs

Canadian Dollar (CAD)

 

 ■ Interbank overnight financing rate

 

 ■ Banker’s acceptance out to three months

 

 ■ BAX futures out to two years

 

 ■ Swap rates

European Dollar (EUR)

 

 ■ Interbank overnight financing rate

 

 ■ Interbank deposit rates out to three months

 

 ■ LIFFE three-month EURIBOR futures out to three years

 

 ■ Swap rates

Japanese Yen (JPY)

 

 ■ Interbank overnight financing rate

 

 ■ Interbank deposit rates out to three months

 

 ■ CME three-month Yen LIBOR futures out to two years

 

 ■ Swap rates

United Kingdom Sterling (GBP)

 

 ■ Interbank overnight financing rate

 

 ■ Interbank deposit rates out to three months

 

 ■ LIFFE three-month Sterling LIBOR futures out to two years

 

 ■ Swap rates

US Dollar (USD)

 

 ■ Interbank overnight financing rate

 

 ■ LIBOR fixings out to three months

 

 ■ Eurodollar futures or FRAs out to five years

 

 ■ Swap rates (frequently quoted as government bond yield for chosen bench-
mark adjusted for swap spreads)
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In summary, the swap term structure offers several advantages over
government curves, and is a robust tool for pricing and hedging fixed-
income products. Correlations among governments and other fixed-
income products have declined, making the swap term structure a more
efficient hedging and pricing vehicle.4 With the supply of government
issues declining and high correlations of credit spreads to swap spreads,
the swap term structure is a potential alternative to the government
term structure as a benchmark for measuring the relative value of differ-
ent debt classes. The next section presents a methodology for deriving
the swap term structure.

SWAP CURVE CONSTRUCTION

The swap curve depicts the relationship between the term structure and
swap rates. The swap curve consists of observed market interest rates,
derived from market instruments that represent the most liquid and
dominant instruments for their respective time horizons, bootstrapped
and combined using an interpolation algorithm. This section describes a
complete methodology for the construction of the swap term structure.

Curve Inputs
In deriving the swap curve, the inputs should cover the complete term
structure (i.e., short-, middle-, and long-term parts). The inputs should
be observable, liquid, and with similar credit properties. Using an inter-
polation methodology, the inputs should form a complete, consistent,
and smooth yield curve that closely tracks observed market data. Once
the complete swap term structure is derived, an instrument is marked to
market by extracting the appropriate rates off the derived curve.

The technique for constructing the swap term structure, as con-
structed by market participants for marking to market purposes, divides
the curve into three term buckets. The short end of the swap term struc-
ture is derived using interbank deposit rates. The middle area of the
swap curve is derived from either forward rate agreements (FRAs) or
interest rate futures contracts. The latter requires a convexity adjust-
ment5 to render it equivalent to FRAs. The long end of the term struc-
ture is constructed using swap par rates derived from the swap market.

A combination of the different interest rates forms the basis for the
swap curve term structure. For currencies where the future or forward

4 D. Theobald and G. Singh, “The Outlook for Swaps as a Hedge Vehicle,” JP Mor-
gan (2000).
5 The adjustment required to convert a futures interest rate to a forward interest rate.

6-Ron-PracticalGuide  Page 141  Thursday, August 29, 2002  10:04 AM

http://abcbourse.ir/


142 INTEREST RATE AND TERM STRUCTURE MODELING

market is illiquid, inefficient, or non-existent for certain tenors,6 it is
customary to use longer-term interbank deposit rates and rely more
heavily on interpolation. On the other hand, for currencies such as the
U.S. dollar, where an efficient liquid futures market exists, for longer-
term maturities it is customary to use futures contracts with longer
maturities (i.e., beyond two years out to five years).

The inputs used to construct the term structure are currency-dependent.
Some currencies offer more liquid and deeper markets than others (see
Exhibit 6.1). A swap term structure should be constructed given these
micro constraints.

Deriving the Swap Curve
To derive the swap term structure, observed market interest rates com-
bined with interpolation techniques are used; also, dates are constructed
using the applicable business-day convention. Swaps are frequently con-
structed using the modified following business-day convention, where
the cash flow occurs on the next business day unless that day falls in a
different month. In that case, the cash flow occurs on the immediately
preceding business day to keep payment dates in the same month.7 The
swap curve yield calculation convention frequently differs by currency.
Exhibit 6.2 lists the different payment frequencies, compounding fre-
quencies, and day count conventions, as applicable to each currency-
specific interest rate type.

EXHIBIT 6.2  Yield Calculation Conventions by Currency

6 Time to maturity of financial instrument.
7 ISDA Credit Derivatives Definitions. International Swaps and Derivatives Associ-
ation (ISDA) (1999).

Currency/Rate Payment Freq. Compounding Freq. Day Count Convention

CAD cash rates ACT/365
CAD swap rates S/A S/A ACT/365
EUR cash rates ACT/360
EUR swap rates A A     30/360
JPY cash rates ACT/360
JPY swap rates S/A S/A ACT/365
GBP cash rates ACT/365
GBP swap rates S/A S/A ACT/365
USD cash rates ACT/360
USD swap rates S/A S/A     30/360
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The Short End of the Swap Curve
The short end of the swap curve, out to three months, is based on the
overnight, 1-month, 2-month, and 3-month deposit rates. The short-end
deposit rates are inherently zero-coupon rates and need only be con-
verted to the base currency swap rate compounding frequency and day
count convention. The following equation is solved to compute the con-
tinuously compounded zero swap rate (rc):

(1)

where rd represents the observed market deposit rate, tm represents the
number of days to maturity, and ty represents the number of days in a
year as specified according to the day count convention used. Continu-
ously compounded interest rates are used for consistency with other
parts of this chapter.

The Middle Area of the Swap Curve
The middle area of the swap curve up to two years is derived from
either FRA rates or interest rate futures contracts. FRAs are preferable,
as they carry a fixed time horizon to settlement and settle at maturity,
whereas futures contracts have a fixed settlement date and are marked
to market daily. FRAs for most currencies, however, are not observable
or suffer from lack of liquidity. On the other hand, futures contracts are
exchange traded, rendering them more uniform, liquid, and transparent.
Extracting forward rates from futures rates requires a convexity adjust-
ment. It is an adjustment for the difference in convexity characteristics
of futures contracts and forward rates. Most interest rate futures have
zero convexity, a fixed payoff per basis point change, regardless of the
level of underlying interest rates, whereas FRAs are convex instruments.
The convexity bias is positively correlated to the futures contract matu-
rity, and is of the magnitude of one to two basis points for maturities
around one year, gradually increasing with term to maturity.

A long position in FRAs or swaps and a short position in futures has
net positive convexity. The short futures position has a positive payoff
when interest rates rise and lower losses when interest rates fall, as they
can be refinanced at a lower rate. This mark to market positive effect of
futures contracts creates a bias in favor of short sellers of futures con-

rc
ty

tm
----- ln 1

rd
ty

tm
-----

------+

 
 
 
 
 
 

×=
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144 INTEREST RATE AND TERM STRUCTURE MODELING

tracts. This bias must be removed from futures contracts prices to derive
an unbiased estimator of the equivalent forward rates.

Convexity Adjustment Estimation Estimating the convexity adjustment requires
an estimation of the future path of interest rates up to the future contract
maturity. Convexity adjustments for several futures markets are pro-
vided by brokers or from market data vendors. An alternative methodol-
ogy is to use the Hull-White term structure model to estimate the
convexity bias.8 In the Hull-White model, the continuously compounded
forward rate, lasting between times t1 and t2 (denominated in years from
current date), equals the continuously compounded future rate less the
following convexity adjustment:

(2)

where

 

σ is the standard deviation of the change in short-term interest
rates expressed annually, and a is the mean reversion rate.

Mean Reversion Rate Estimation Convexity bias estimation requires an esti-
mate of the mean reversion rate (a) and the standard deviation (

 

σ) of the
change in short-term interest rates expressed annually. Historical data can
be used to estimate the mean reversion rate. A typical range of values for
the mean reversion rate is 0.001 for negligible effects to 0.1, which could
have material effects. For simplicity, a constant default value for mean
reversion speed could be assumed. For example, Bloomberg assumes a
constant mean reversion rate of 0.03.

We assume that the short-term interest rates follow the following
Vasicek discount bond prices stochastic process:9

(3)

where rt is the short-term interest rate at time t, and dzt is the increment
of a standard Wiener process. Parameter 

 

θ specifies the long run value
of rt.

8 J.C. Hull and A. White, “Pricing Interest Rate Derivative Securities,” The Review
of Financial Studies 3 (1990).
9 O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of
Financial Economics 5 (1977).
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To estimate the Vasicek continuous stochastic time model, the
model must be discretized. We discretized and estimated the continuous
time model as follows:

(4)

where

(5)

The parameter δ is used to estimate the negative of the mean rever-
sion rate, −a, where It−1 is the information set at time t − 1.

Interest Rates Volatility Estimation There are several alternative methodolo-
gies for estimating the standard deviation (σ) of the change in short-
term interest rates. Two derivation methodologies are explored next.

The first methodology flows from the mean reversion estimation
process. It estimates the conditional standard deviation of short-term
interest rates using the GARCH(1, 1) model:

(6)

The conditional density of ∆rt is:

(7)

The log-likelihood function, where N represents the total number of
observations,

(8)

is then maximized numerically with respect to the population parame-
ters. Maximizing the log-likelihood function gives estimates of α, β, and
γ. The annualized standard deviation equals , assuming there
are 252 trading days in a year.

rt∆ ϕ δrt 1– εt+ +=
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The second methodology uses the implied volatility from interest
rate caps that correspond to the appropriate time horizon. An interest
rate cap comprises q caplets, where q is the number of reset dates. Each
caplet corresponds to the rate at time tk and provides payoff at time
tk+1. An interest rate cap provides insurance against adverse upward
movements in floating rate obligations during a future period. An inter-
est rate caplet provides the cap holder with the following payoff:

(9)

where n denotes caplet notional, Rx denotes the cap rate, Rk is the reset
rate at time t, and δk = tk+1 − tk. As an interest rate caplet market value
is observable, assuming Rk is lognormal, the implied interest rate caplet
volatility σk can be computed using the following extension to the
Black-Scholes model:10

(10)

where

P(0, t) is the spot price of a zero-coupon bond paying $1 at time T.
Fk denotes the forward rate for the period between tk and tk+1. N(x) is
the cumulative probability distribution function, where .
The volatility σk is solved for the period between tk and tk+1.

The estimated conditional standard deviation or the implied volatil-
ity, for the period between tk and tk+1, and the mean reversion rate are
used in combination with the Hull-White model to adjust for the inter-
est rates futures convexity bias. Futures rates with maturities from the
six-month to the two-year time horizon are frequently used. For curren-
cies with highly liquid interest rates futures markets, interest rate
futures could be used out to five years.

10 J.C. Hull, Options Futures and Other Derivatives, 4th edition (Upper Saddle
River, NJ: Prentice-Hall, Inc., 1999).

nδk max Rk Rx– 0,( )
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Futures Prices Futures prices are quoted as (100 − future interest rate ×
100). The quarterly compounded future interest rates adjusted for con-
vexity are converted to continuously compounded zero rates as follows.

Convert the quarterly compounded future rate to the continuously
compounded future rate using equation (1), where tm equals the future’s
accrual period (difference in days between two consecutive futures con-
tracts).

The continuously compounded future rate is then converted to a
continuously compounded zero rate using the following transformation:

(11)

where rf is the continuously compounded future rate for the period
between t1 and t2, and r1 and r2 are the continuously compounded zero
rates for maturities t1 and t2, respectively.

The Long End of the Swap Curve
The long end of the swap curve is derived directly from observable cou-
pon swap rates. These are generic plain vanilla interest rate swaps with
fixed rates exchanged for floating interest rates. The fixed swap rates are
quoted as par rates and are usually compounded semiannually (see
Exhibit 6.2). The bootstrap method is used to derive zero-coupon inter-
est rates from the swap par rates. Starting from the first swap rate, given
all the continuously compounded zero rates for the coupon cash flows
prior to maturity, the continuously compounded zero rate for the term
of the swap is bootstrapped as follows:

(12)

where m is the swap payment frequency per annum, c is the coupon per
annum, which is equal to the observed swap rate times the swap
notional, and ri represents the continuously compounded zero rate for
time ti. The bootstrapped interest rate, rT, is the continuously com-
pounded zero rate for time T.

r2
rf t2 t1–( ) r1t1+

t2
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rT
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m
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Progressing recursively along the observed swap rates interpolating
between market observations as required forms the complete long end
of the swap curve.

Interpolation Algorithm
There is no single correct way to link deposit, futures, and swap interest
rates to construct the complete swap term structure; however, several
fundamental characteristics and conventions should be followed, to
ensure yield curve validity. The derived yield curve should be consistent
and smooth, and should closely track observed market data points.
However, over-smoothing the yield curve might cause the elimination of
valuable market pricing information. This is the main criticism against
the use of more advanced interpolation yield curve modeling techniques
for pricing derivatives, such as the Nelson and Siegel11 and Svensson12

functions. These functions fit the market data very loosely, which is
appropriate for extracting expectations or comparative analysis across
countries, but is not appropriate for market pricing. The market con-
vention has been to use several interpolation techniques to generate a
complete term structure that closely mimics the observed market data
for marking to market purposes. The most prevalent algorithms of
interpolation used in practice to create a swap term structure include
linear interpolation and cubic splines.13

Piecewise Linear Interpolation
All observed market data points are connected by a straight line to form
a complete term structure. The value of a new data point is assigned
according to its position along a straight line between observed market
data points. Linear interpolation is simple to implement and closely
tracks observed market interest rates. However, it tends to produce
kinks around transition areas where the yield curve is changing slope.
Therefore, linear interpolation is inappropriate for modeling yield
curves that change slope frequently and exhibit significant term struc-
ture curvature. As illustrated in Exhibits 6.3 through 6.7, the swap term
structure is not characterized by a continuously changing slope nor does
it exhibit significant curvature.

11 C.R. Nelson and A.F. Siegel, “Parsimonious Modelling of Yield Curves,” Journal
of Business 60 (1987).
12 L.E. Svensson, “Estimating and Interpreting Forward Interest Rates: Sweden
1992–94,” CEPR Discussion Paper 1051 (October 1994).
13 For other non-linear curve modelling techniques see D. Satyajit, Risk Management
and Financial Derivatives, (NY: McGraw-Hill, Inc., 1998).
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EXHIBIT 6.3  USD Swap Zero Curve (Continuously Compounded) as of 
14 April 2000

Constructing Piecewise Linear Interpolation Piecewise linear interpolation can
be presented in a closed form, which simplifies the interpolation pro-
cess.

(13)

Here, i is the market observation index with time to maturity of ti, and R(t)
represents the interest rate corresponding to maturity t, where ti ≤ t ≤ ti+1.
The formula can be used to derive any swap rate between two market
observations R(ti) and R(ti+1).

R t( ) R ti( )
t ti–( )

ti 1+ ti–( )
-------------------------+ R ti 1+( ) R ti( )–[ ]×=
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EXHIBIT 6.4  JPY Swap Zero Curve (Continuously Compounded) as of 
14 April 2000

Piecewise Cubic Spline Interpolation
Use of polynomial functions that pass through the observed market data
points create a fitted smooth yield curve that does not oscillate wildly
between observations. It is possible to either use a single high-order
polynomial of degree n − 1 (n is the number of observations), or piece
together low-order polynomials (e.g., quadratic, cubic). The advantage
of using a number of lower-order polynomials (splines) is that the extra
degrees of freedom can be used to impose additional constraints to
ensure smoothness and prevent wild oscillatory patterns between obser-
vations. The piecewise cubic spline technique goes through all observed
data points and creates by definition the smoothest curve that fits the
observations and avoids kinks.
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EXHIBIT 6.5  EUR Swap Zero Curve (Continuously Compounded) as of 
14 April 2000

Constructing a Piecewise Cubic Spline To construct a set of cubic splines, let
the function Ri(t) denote the cubic polynomial associated with the t seg-
ment [ti, ti+1]:

(14)

where n is the number of market observations, ri represents market
observation (knot point) i, and ti represents time to maturity of market
observation i.

There are n market observations, n − 1 splines, and three coeffi-
cients per spline. Overall, there are 3n − 3 unknown coefficients. The
coefficients of the cubic spline function defined over the interval [t, T]
can be obtained by imposing the following constraints:

Ri t( ) ai t ti–( )3 bi t ti–( )2 ci t ti–( ) ri+ + +=
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b1 = 0

EXHIBIT 6.6  CAD Swap Zero Curve (Continuously Compounded) as of
14 April 2000

ai ti 1+ ti–( )3 bi ti 1+ ti–( )2 ci ti 1+ ti–( )+ + ri 1+ ri–=

3ai 1– ti ti 1––( )2 2bi 1– ti ti 1––( ) ci 1– ci–+ + 0=

6ai 1– ti ti 1––( ) 2bi 1– 2bi–+ 0=

6an 1– tn tn 1––( ) 2bn 1–+ 0=
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EXHIBIT 6.7A  Linear Interpolation: Swap Zero Curve by Currency (Continuously 
Compounded)

EXHIBIT 6.7B     Piecewise Cubic Spline: Swap Zero Curve by Currency (Continuously
Compounded)

The first set of n − 1 constraints require that the spline function join
perfectly at the knot points. The second and third set of 2n − 2 con-
straints require that first and second derivative constraints match adja-
cent splines. Finally, the last two constraints are end point constraints
that set the derivative equal to zero at both ends.

The linear algebraic system consists of 3n − 3 equations and 3n − 3
unknowns that can be solved to produce the optimal piecewise cubic
spline. Press, Teukolsky, Vetterling, and Flannery describe a routine for
cubic spline interpolation.14

14 W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C,
2nd edition (NY: Cambridge University Press, 1998). See also Chapter 7 in this
book.
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Consolidation
The complete term structure is formed by joining the different parts of
the swap term structure together using the chosen interpolation method-
ology. The end result is a complete swap term structure that is a funda-
mental tool in marking to market fixed-income securities.

The construction of the swap term structure is not a uniform prac-
tice. The substitutable inputs, overlapping instrument maturity dates,
inconsistencies between different inputs, different alternatives for tran-
sition points between different sections of the term structure, and vari-
ety of instruments and derivation techniques all combine to form a
variety of plausible swap term structures. The most prominent problems
arise around the transition areas between inputs as especially exhibited
in Exhibit 6.6. The transition areas, especially around the two-year
mark, lack smoothness and an oscillatory pattern is observable. Several
possible solutions include using different term structures for different
applications and adjustments to the set of rates utilized. In general,
institutions tend to adopt their own approaches to these issues. How-
ever, over-adjustment and over-smoothing of the term structure can be
counterproductive. By eliminating variation, valuable pricing informa-
tion embedded in the term structure might be “smoothed” away.

The swap term structures for major currencies are presented in
Exhibits 6.3 through 6.7. In general, both linear interpolation and
piecewise cubic spline derivation techniques generate similar zero and
forward swap term structures. However, after zooming in on relatively
unstable areas of the term structure, one can detect the better fit of
piecewise cubic spline over linear interpolation in preserving a term
structure curvature and smoothness. Nevertheless, cubic splines may
produce inconsistent or implausible forward term structures such as
exhibited at the long end of Exhibit 6.6. As these are estimates of the
swap term structure, it is impossible to determine precisely which esti-
mate serves as a better benchmark. The swap zero and forward term
structures for major currencies are much smoother and consistent than
those for the less-prevalent currencies. This attribute characterizes more
liquid, developed, and deeper markets.

CONCLUSIONS

The swap term structure is a pivotal element in pricing fixed-income
products, measuring the relative value of debt classes, and measuring
interest rate expectations. The swap term structure also offers many
advantages over the government term structure. This chapter has outlined
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a methodology for deriving the swap term structure. The derived zero
term structure is used to mark to market financial instruments by estimat-
ing and discounting their future cash flows to derive their present value.
The different time buckets of the swap term structure are extracted from
different market rates and instruments. The variety of plausible extrac-
tion and interpolation techniques and data availability problems prevent
the derivation of a completely uniform efficient yield curve. 

The outlined model carefully preserves variations in market obser-
vations, thereby maintaining important pricing information. However,
linear interpolation can introduce inaccuracies when there is significant
curvature in the term structure, or sparse or noisy data. Cubic spline
interpolation, on the other hand, may produce inconsistent or implausi-
ble forward term structures.

 The most problematic area of the term structure tends to be the tran-
sition area between time buckets. Nevertheless, linear interpolation and
cubic splines are the most prevalent yield curve generation techniques
used in the marketplace for marking to market purposes. To get mark-to-
market prices that are consistent with the marketplace, institutions use
the specified inputs and derivation techniques. However, an institution
may develop more robust term structure derivation techniques for identi-
fying mispriced securities, such as a multiple factor model.

The importance of the swap term structure as a benchmark for pricing
fixed-income products and for comparative equity valuation is expected to
increase.15

15 Equities are valued against bonds through the reverse price to earnings ratio to
government yield. With the decreasing role of government bonds as a benchmark for
fixed-income debt and their increased price volatility and scarcity, the swap term
structure, which shows greater stability, is an ideal substitute.
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he term structure of interest rates defines the set of spot or zero-coupon
rates that exist in a debt capital market of default-free bonds, distin-

guished only by their term to maturity. In practice the term structure is
defined as the array of discount factors on the same maturity term.
Extracting the term structure from market interest rates has been the focus
of extensive research, reflecting its importance in the field of finance.

The term structure is used by market practitioners for valuation
purposes and by central banks for forecasting purposes. The accurate
fitting of the term structure is vital to the smooth functioning of the
market. A number of approaches with which to undertake this have
been proposed, and the method chosen is governed by the user’s require-
ments. Practitioners desire an approach that is accessible, straightfor-
ward to implement, and as accurate as possible. In general there are two
classes of curve fitting techniques—the parametric methods (so-called

T
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because they attempt to model the yield curve using a parametric func-
tion) and the spline methods.1 Parametric methods include the Nelson-
Siegel model and a modification of this proposed by Svensson, as well as
models described by Wiseman and Bjork and Christensen.2 James and
Webber suggest that these methods produce a satisfactory overall shape
for the term structure but are suitable only where good accuracy is not
required.3 Market practitioners instead generally prefer an approach
that gives a reasonable tradeoff between accuracy and ease of imple-
mentation, an issue we explore in this chapter. 

The cubic spline process presents no conceptual problems, and is an
approximation of the market discount function. McCulloch uses cubic
splines and Beim states that this approach performs at least as satisfac-
torily as other methods.4 Although the basic approach can lead to unre-
alistic shapes for the forward curve (for example, see Vasicek and Fong5

and their suggested improvement on the approach using exponential
splines), it is an accessible method and one that gives reasonable accu-
racy for the spot rate curve. Adams and Van Deventer6 illustrate how
one can use the technique to obtain maximum smoothness for forward
curves (and an extension to quartic splines), while the basic technique
has been improved as described by Fisher, Nychka, and Zervos,7 Wag-
goner,8 and Anderson and Sleath.9 These references are considered later.

1 Parametric models are also known as parsimonious models.
2 C. Nelson and A. Siegel, “Parsimonious modeling of the Yield Curve,” Journal of
Business 60, no 4 (1987), pp.473–489. L. Svensson, “Estimating Forward Interest
Rates with the Extended Nelson and Siegel Method,” Sveriges Riksbank Quarterly
Review 3, (1995). J. Wiseman, “The Exponential Yield Curve Model,” JPMorgan
European Fixed Income Research, 1994. T. Bjork and B. Christensen, “Interest Rate
Dynamics and Consistent Forward Rate Curves,” University of Aarhus Working Pa-
per, 1997, pp. 1–38.
3 J. James and N. Webber, Interest Rate Modelling, Wiley 2000, p. 444
4 J. McCulloch, “The Tax-Adjusted Yield Curve,” Journal of Finance 30, 1975, pp.
811–830. D. Beim, “Term Structure and the Non-Cash Value in Bonds,” First Bos-
ton Working Paper series, 1992.
5 O. Vasicek and H. Fong, “Term Structure Modelling Using Exponential Splines,”
Journal of Finance 37, 1982, pp. 339–361.
6 K. J. Adams and D. Van Deventer, “Fitting Yield Curves and Forward Curves with
Maximum Smoothness,” Journal of Fixed Income 6, 1994, pp. 52–62.
7 M. Fisher, D. Nychka, and D. Zervos, “Fitting the Term Structure of Interest Rates
with Smoothing Splines,” Working Paper No. 95-1, Finance and Economics Discus-
sion Series, Federal Reserve Board 1995.
8 D. Waggoner, “Spline Methods for Extracting Interest Rate Curves from Coupon
Bond Prices,” Working Paper No. 97-10, Federal Reserve Bank of Atlanta 1997.
9 N. Anderson and J. Sleath, “New Estimates of the UK Real and Nominal Yield
Cuirves,” Bank of England Quarterly Bulletin, November 1999, pp. 384–392.
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CUBIC SPLINES

Splines are a non-parametric polynomial interpolation method.10 There is
more than one way of fitting them. The simplest method is an ordinary
least squares regression spline, but this approach produces wildly oscillat-
ing curves. The more satisfactory manner is a smoothing splines method.
We consider the basic approach and how to implement it in this chapter.

Fitting a Discount Function
In mathematics a “spline” is a piecewise polynomial function, made up
of individual polynomial sections or segments that are joined together at
(user-selected) points known as knot points. Splines used in term struc-
ture modelling are generally made up with cubic polynomials, and the
reason for cubic polynomials, as opposed to polynomials of order say,
two or five, is explained in straightforward fashion by de la Grand-
ville.11 A cubic spline is a function of order three, and a piecewise cubic
polynomial that is twice differentiable at each knot point. At each knot
point the slope and curvature of the curve on either side must match.
We employ the cubic spline approach to fit a smooth curve to bond
prices (yields) given by the term discount factors.

A polynomial of sufficiently high order may be used to approximate
to varying degrees of accuracy any continuous function, which is why a
polynomial approximation of a yield curve may be attempted. For
example James and Webber state that given a set of m points with dis-
tinct values, a Lagrange polynomial of degree m will pass through every
point.12 However, the fit can be very wild with extreme behavior at the
long end. We will demonstrate how a cubic spline approximation can be
used to obtain better results.

This chapter provides a discussion of piecewise cubic spline interpola-
tion methodology and its application to the term structure. Our intent is
to provide a comprehensive and accessible approach to cubic spline inter-
polation for implementation by practitioners so that the reader will have
a full understanding of how cubic splines are calculated and the implica-
tions of using piecewise cubic spline interpolation methods. In addition,
the reader can employ the approach shown to implement the methodol-
ogy for their own applications, including constructing spot and forward
yield curves from market-determined interest rates. We recommend a

10 A spline originally referred to a tool used by draughtsmen or carpenters for draw-
ing smooth curves.
11 O. De la Grandville, Bond Pricing and Portfolio Analysis, MIT Press 2001, pp.
248–252.
12 James and Webber, Interest Rate Modeling, pp. 430–432.
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cubic spline technique because this ensures that the curve passes through
all the selected (market determined) node points. This enables practitio-
ners to fit a yield curve to observed market rates (LIBOR or bond yields)
reasonably accurately and produces a satisfactory zero-coupon curve
under most circumstances.

Our starting point is a set of zero curve tenors (or discount factors)
obtained from a collection of market instruments such as cash deposits,
futures, swaps, or coupon bonds. We therefore have a set of tenor points
and their respective zero rates (or discount factors). The mathematics of
cubic splines is straightforward but we assume a basic understanding of
calculus and a familiarity with solving simultaneous linear equations by
substitution. An account of the methods analyzed in this chapter is
given in Burden and Faires, which has very accessible text on cubic
spline interpolation.13

Background on Cubic Splines
When fitting a curve by interpolating between nodes or tenor points, the
user must consider conflicting issues. There is a need to balance between
simplicity and correctness, and hence a tradeoff between ease of use and
the accuracy of the result. In certain cases practitioners will accept a
lower degree of accuracy at the nodes, in favor of smoothness across the
curve. In the cubic spline approach the primary aim is smoothness. In an
attempt to create a smooth and accurate measurement at the nodes
however, we may be confronted by oscillation in the curve. Although
linear interpolation is a reasonable calculation method, interest rate
markets are not linear environments made up of coupled straight lines.
The point between two tenors cannot be accurately estimated using a
straight line.

Although there are a number of alternative methods available to the
practitioner, a reasonable approach is to retain the concept of piecewise
interpolation but to abandon the use of straight lines. The reason that
we do not depart from piecewise interpolation is because this method of
curve smoothing provides accuracy at the nodes, since each piecewise
function touches a node. Accuracy at the nodes can be an important
consideration when a pricing methodology based on the elimination of
arbitrage is employed. Thus we continue with piecewise fitting, but
instead of applying a linear fitting technique, we apply a cubic polyno-
mial to each piece of the interpolation. Cubic splines provide a great
deal of flexibility in creating a continuous smooth curve both between
and at tenor points.14

13 R. Burden and D. Faires, Numerical Analysis, Brooks/Cole 1997.
14 See footnote 10 for a word on the origin of the use of the term “spline.”
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EXHIBIT 7.1  Cubic Polynomials Touching at the Nodes

CUBIC SPLINE METHODOLOGY

We assume that the practitioner has already calculated a set of nodes using
a yield curve construction technique such as bootstrapping. A zero curve is
then fitted using the cubic spline methodology by interpolating between
nodes using individual cubic polynomials. Each polynomial has its own
parameters but are constructed in such a way that their ends touch each
node at the start and end of the polynomial. The set of splines, which touch
at the nodes, therefore form a continuous curve. Our objective is to pro-
duce a continuous curve, joining market observed rates as smoothly as pos-
sible, which is the most straightforward means by which we can deduce
meaningful data on the correct interest rate term structure in the market. 

In Exhibit 7.1 we can see that two cubic polynomials which join at
point xN+1 are used to form a continuous curve. However, it is also clear
from the curves in the exhibit that the two polynomials do not result in
a smooth curve. In order to have a smooth curve we need to establish
“smoothing” criteria for each spline. To do this we must first ensure
that the polynomials touch or join together at the nodes. Secondly we
must ensure that where the polynomials touch, the curve is smooth.
Finally we ensure that the curve is continuously differentiable, or in
other words, the curve has a smooth rate of change at and between
tenor points. The required criteria to meet these conditions are:

Requirement 1: The value of each polynomial is equal at tenor points.
Requirement 2: The first differential of each polynomial is equal at
tenor points.
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Requirement 3: The second differential of each polynomial is equal at
tenor points.
Requirement 4: The second differential of each polynomial is continu-
ous between tenor points.

Consider a polynomial of the form y = ax3 + bx2+ cx + d, the second
differential y´´ = 6ax + 2b is a linear function and by its very definition
is continuous between tenor points. The fourth requirement is therefore
always met and in this chapter we will not deal with this requirement in
any further detail. In the rest of this chapter we will refer to the first
three requirements and how they are met at the nodes.

THE HYPOTHESIS

Assuming the final solution is unknown at this stage, it seems plausible
that an almost infinite set of parameters a, b, and c can be found which
will result in all of our cubic spline requirements being met.

We observe in Exhibit 7.2 three imaginary curves, all of which
would meet our requirements that the:

 

 ■ first differential of each spline is equal at tenor points; and the

 

 ■ second differential of each spline is equal at tenor points.

Admittedly we have considered nodes that are sitting in a straight
line but even where the nodes do not line up it may be possible to find a
range of possible solutions. Taking this further, spline A and spline B as
shown in Exhibit 7.3 are valid solutions yet it is intuitive, given our
knowledge of interest rate markets, that A is likely to be more suitable
for our purposes of yield curve interpolation.

EXHIBIT 7.2  Hypothetical Solutions 
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EXHIBIT 7.3  Hypothetical Splines

The issue to determine therefore, is: Is there an infinite set of param-
eters, each of which would meet our requirements for fitting the curve;
or is it possible to determine a single solution? Of course, our require-
ment is in a single solution; moreover, a solution that can be found
quickly from any set of market rates. 

PRACTICAL APPROACH

By splitting the yield curve into individual node/tenor pairs, we may work
with individual lines within each tenor. A cubic polynomial can then be
added to each line to provide the cubic spline. For ease of illustration, we
take this one step further and imagine an alternative horizontal axis. This is
referred to as X as shown in Exhibit 7.4. Assume that between each node
pair that this horizontal axis X runs from 0 (at xN) to xN+1

 

− xN (at xN+1).
In Exhibit 7.4 the X axis is a calculated value determined from the x

axis. The points xN and xN+1 are isolated for spline SN. It is then
assumed that X0 equals zero at xN and stretches to XN which equals
(xN+1

 

− xN) on the X axis. If these lines are fully isolated then a cubic
polynomial, of the form y = aX3 + bX2 + cX + d, can be constructed to
touch the points xN and xN+1.

The First Requirement
In order for the polynomial to touch the nodes, a cubic polynomial must be
constructed so that at point X0 the polynomial provides a result that is
equal to yN. This is very easy to achieve. Since X is equal to zero at its start-
ing point, the polynomial takes the following form:
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EXHIBIT 7.4  Creating a Working Environment

yN = aN03 + bN02 + cN0 + dN
yN = dN

So as long as dN is equal to yN, then our polynomial will touch the node at X0.
In order for the polynomial to touch the second node, the node at point

xN+1, then the polynomial must take the following form at point XN:

yN+1 = aN(xN+1 − xN)3 + bN(xN+1 − xN)2 + cN(xN+1 − xN) + dN

or

(1)

where XN = xN+1 − xN.
It is worth noting that at this point in our process we do not know

what the values of a, b, or c are. These will be derived below from our
other requirements.

The Second Requirement
To meet the second requirement of a cubic spline, the first differential yN´
must equal the first differential yN+1´ at the tenor point xN+1. In other
words at node xN+1:

dN 1+ aNXN
3 bNXN

2 cNXN dN+ + +=
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(2)

We know from our conditional working environment that at node
xN+1 for function yN´ that X = (xN+1 − xN). We also know from the
same assumption that X = 0 at the start of the next polynomial, i.e., for
function yN+1´. Therefore:

so that

(3)

Third Requirement
To meet the third requirement of a cubic spline, the second differential
yN´´ assessed at the point xN+1 should equal the second differential yN+1´´.
In other words at node xN+1:

6aNXN + 2bN = 6aN+1XN+1 + 2bN+1

We know from our conditions that at node xN+1 for function yN´´
that X = (xN+1 − xN). We also know from the same assumption that X = 0
for function yN+1´´. Therefore:

6aNXN + 2bN = 6aN+10 + 2bN+1

6aNXN = 2bN+1 − 2bN

(4)

Meeting All Requirements Simultaneously
We now have equations which ensure that each of the three require-
ments can be met. We now need a solution that will ensure that all
requirements are met at the same time. By substitution, a set of calcula-
tions can be performed which meet both requirements and reduce these
equations down to a factor of parameter b only.

Using equation (4) as a substitute for a in equation (3) we obtain:

3aNXN
2 2bNXN cN+ + 3aN 1+ XN 1+

2 2bN 1+ XN 1+ cN 1++ +=

3aN 1+ 02 2bN 1+ 0 cN 1++ + 3aNXN
2 2bNXN cN+ +=

cN 1+ 3aNXN
2 2bNXN cN+ +=

aN

bN 1+ bN–

3XN

---------------------------=
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              (5)

Using equation (4) as a substitute for a in equation (1) we get:

   (6)

Taking this solution one step further we can substitute equation (6)
into equation (5) as follows:

                 (7)

cN 1+ 3aNXN
2 2bNXN cN+ +=

cN 1+

3XN
2 bN 1+ bN–( )

3XN

--------------------------------------------- 2bNXN cN+ +=

cN 1+ XN bN 1+ bN–( ) 2bNXN cN+ +=

cN 1+ XN bN 1+ bN+( ) cN+=

dN 1+

bN 1+ bN–( )

3XN

--------------------------------XN
3 bNXN

2 cNXN dN+ + +=

dN 1+

bN 1+ bN–( )

3
--------------------------------XN

2 bNXN
2 cNXN dN+ + +=

cNXN

bN 1+ bN–( )

3
--------------------------------XN

2– bNXN
2– dN 1+ dN–+=

cN XN

bN 1+ 2bN+( )

3
------------------------------------

dN 1+ dN–( )

XN

--------------------------------+–=

dN 2+ dN 1+–( )

XN 1+

------------------------------------ XN 1+

bN 2+ 2bN 1++( )

3
----------------------------------------– XN bN 1+ bN+( ) XN

bN 1+ 2bN+( )

3
--------------------------------

dN 1+ dN–( )

XN

------------------------------+–=

XN 1+ bN 2+ 2bN 1++( )– 3XN bN 1+ bN+( ) XN bN 1+ 2bN+( ) 3
dN 1+ dN–( )

XN

------------------------------ 3
dN 2+ dN 1+–( )

XN 1+

-----------------------------------–+–=

XN 1+ bN 2+ 2bN 1++( )– XN 2bN 1+ bN+( ) 3
dN 1+ dN–( )

XN

------------------------------ 3
dN 2+ dN 1+–( )

XN 1+

-------------------------------------–+=

XN 1+ bN 2+ XN 2bN 1+ bN+( )– 3
dN 1+ dN–( )

XN

------------------------------– 3
dN 2+ dN 1+–( )

XN 1+

------------------------------------ 2XN 1+ bN 1+–+=

bN 2+

2XNbN 1+– XNbN– 2XN 1+ bN 1+– 3
dN 1+ dN–( )

XN

------------------------------– 3
dN 2+ dN 1+–( )

XN 1+

---------------------------------+

XN 1+

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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A Unique Solution
For clarity and ease of illustration, the results of these equations are set
out as a table of related formulas shown in Exhibit 7.5.

It is a simple matter to determine the values of parameters a, b, c,
and d at each node n by using the formulas set out in Exhibit 7.5. Each
node (from n > 2) is directly or indirectly dependent on the values of
previous parameters and can be determined from those previous param-
eters. This is an important result, and means that any errors in the cal-
culation early on are replicated and magnified throughout the analysis.
However, the first two occurrences of b (b1 and b2) do not have previ-
ous nodes from which to determine their values. In other words the only
values for which we do not have solutions are those for b1 and b2.

Depending on the values assumed for b1 and b2, the result is usually
an oscillating b and ever increasing |b|. This means that the slope of the
spline gets steeper at each tenor as the absolute value of the first differ-
ential increases, so the slope of the curve oscillates.

This systematic wave, shown in Exhibit 7.6, is clearly not the kind
of behavior that is commonly observed in a yield curve and should
therefore not be modeled into the curve. Furthermore, we have no
unique solution at this stage. An infinite number of values can be
assigned to b1 and b2 and therefore an infinite number of solutions can
be obtained (most of which exhibit the depicted oscillation effect). So
this is still not what we seek. 

We need an additional restriction that allows us to find a single solu-
tion and which eliminates the oscillation of the output. The restriction
that we put in place is to set the second differential of the first spline y0´´
and last spline yN´´ equal to a constant. We will use a constant of zero for
now, but we come back to this constant at a later stage. Creating this addi-
tional restriction means that we are left with only one unknown, parame-
ter b2. This is demonstrated, using the constant zero, in Exhibit 7.7.

If we find a value for b2 that results in a final value of zero for bN then
we have a single solution and this solution should eliminate the oscillation
shown above. We can determine this  solution using two different methods:
(1) iteration or (2) Gaussian Elimination of a tri-diagonal matrix.

Before we consider each of these solution techniques, we consider
first the requirement of a boundary condition in order to obtain a unique
solution for a cubic spline. In our discussion above we ordained a bound-
ary condition of b1 = bN = 0. In practice two boundary conditions have
become widely accepted:

Condition 1. Natural spline
In a natural spline the second differential at x0 and xN is set to zero. 
In other words y0´´ = yN´´ = 0.
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EXHIBIT 7.6  Typical Spline with No Boundary Conditions

Condition 2. Clamped spline
In a clamped spline the first differential of the function that produced
the nodes and the first differential of the spline are set equal. In other
words y0´ = f(x0)´ and yN´ = f(xN)´. It is immediately apparent when we
construct a yield curve that we do not have a function that can be used
to replicate the nodes. The first differential of this function is therefore
not available. A reasonable approximation can be used based on the
slope of the linear interpolation function between the first two and the
last two nodes. Although this provides a reasonable approximation in
most circumstances, it is not always an appropriate measure. An incor-
rect choice of boundary values could result in spurious and oscillating
results at the short and/or long end of the curve.

An example using the same input data but different (albeit rather
extreme) boundary values is shown in Exhibit 7.8. The natural boundary
uses values zero and zero. In the clamped boundary we have used −50 and
−50 as boundary values. Although these boundary values are extreme,
they do illustrate the effect that inappropriate boundary values can have
on spline results.

These results are not unexpected. Readers may question the practical
difference between having a natural boundary condition against having a
boundary condition that is obviously inappropriate. Both approaches
may lead to oscillation and an incorrect result. The sole practical differ-
ence is that where we set our own boundary value, however inappropri-
ate, the extent of the error is under our own control. For this reason users
may prefer this approach.

The Solution
We now consider each approach to obtaining the solution.

Iterative Solution
A solution for b2 can be obtained by iteration. This “trial-and-error”
style approach is straightforward to understand but is not without its
limitations.
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EXHIBIT 7.8  Inappropriately Clamped Spline

When a cubic spline solution is solved by iteration for a single
parameter, the degree of accuracy required is very high. In test solutions
we found that a higher degree of accuracy was required for a higher
number of nodes. A calculation for 15 nodes or more required the solu-
tion to be accurate to at least eight decimal places. Even apparently neg-
ligible differences in decimal accuracy can result in strange spline
parameters and in turn produce the same oscillation observed above
when no boundary values were set. This is particularly evident at the
long end of the curve as the error becomes compounded by previous
inaccuracies, thus leading to yield curves of limited practical applica-
tion when anything longer than the medium-term maturity range is
modeled.

A fictional set of numbers has been used to demonstrate this point
in Exhibit 7.9. The “Date” column holds the maturity dates for each
rate, while the “Rate” column is of course the set of interest rates for
each particular term to maturity. This data is illustrated graphically in
Exhibit 7.10.

In Exhibit 7.9, an accuracy of eight decimal places is shown but in
fact a much higher level (over 15 decimal places) of accuracy was
required to calculate the results. When we adjust the level of accuracy,
just on parameter b2, to seven decimal places, the results are signifi-
cantly flawed, as shown in Exhibit 7.11.15

It can be seen that within the long dates, parameter b starts to oscil-
late and grow in an exponential manner. A graphical representation of
the rates as a result of this flawed data is shown at Exhibit 7.12. Note
that the oscillation error is highly pronounced.

15 The results were calculated using the “Goal Seek” function on Microsoft Excel.
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EXHIBIT 7.10  Appropriate Solution Using 15 Decimal Places

EXHIBIT 7.9  Iterative Solution to 15 Decimal Places

Date Rate (d) Parameter a Parameter b Parameter c

1-Jan-00    6.000 −0.00001228   0.00000000   0.00544212 
7-Jan-00    6.030   0.00000351 −0.00022106   0.00411577 
31-Jan-00    6.050 −0.00000019   0.00003181 −0.00042615
1-Apr-00    6.100 −0.00000001 −0.00000235   0.00137086 
1-Jul-00    6.200   0.00000002 −0.00000426   0.00076898 
1-Oct-00    6.250 −0.00000001   0.00000117   0.00048462 
1-Jan-01    6.300   0.00000000 −0.00000042   0.00055340 
1-Jul-01    6.400 −0.00000000   0.00000083   0.00062739 
1-Jan-02    6.520   0.00000000 −0.00000126   0.00054853 
1-Jan-03    6.610 −0.00000000   0.00000004   0.00010301 
1-Jan-05    6.700   0.00000000   0.00000000   0.00013362 
1-Jan-06    6.750 −0.00000000   0.00000003   0.00014328 
1-Jan-07    6.800   0.00000000 −0.00000010   0.00011518 
1-Jan-10    6.900 −0.00000000   0.00000014   0.00015545 
1-Jan-11    6.960   0.00000000 −0.00000020   0.00013152 
1-Jan-12    7.000 −0.00000000   0.00000023   0.00014041 
1-Jan-14    7.100   0.00000000 −0.00000047 −0.00003778
1-Jan-15    7.050 −0.00000000   0.00000013 −0.00016286
1-Jan-20    7.000   0.00000000 −0.00000004   0.00000616 
1-Jan-25    6.950 −0.00000000   0.00000002 −0.00002600
1-Jan-30    6.950   0.00000000 
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EXHIBIT 7.12  Incorrect Solution Using 7 Decimal Places

EXHIBIT 7.11  Iterative Solution to 7 Decimal Places

Date Rate (d) Parameter a Parameter b Parameter c

1-Jan-00 6.000 −0.00001228       0.00000000          0.00544210
7-Jan-00 6.030   0.00000351 −0.00022105          0.00411580
31-Jan-00 6.050 −0.00000019       0.00003179        −0.00042640
1-Apr-00 6.100 −0.00000001     −0.00000230          0.00137252
1-Jul-00 6.200   0.00000002     −0.00000442          0.00076105
1-Oct-00 6.250 −0.00000002       0.00000174          0.00051482
1-Jan-01 6.300   0.00000002     −0.00000255          0.00044055
1-Jul-01 6.400 −0.00000006       0.00000695          0.00123776
1-Jan-02 6.520   0.00000008     −0.00002345        −0.00179846
1-Jan-03 6.610 −0.00000011       0.00006372          0.01289764
1-Jan-05 6.700   0.00000103     −0.00017986        −0.07200383
1-Jan-06 6.750 −0.00000419       0.00095266          0.21006837
1-Jan-07 6.800   0.00000395     −0.00363079        −0.76744773
1-Jan-10 6.900 −0.00006704       0.00936251          5.51451411
1-Jan-11 6.960   0.00028391     −0.06404843      −14.44584982
1-Jan-12 7.000 −0.00043548       0.24683078        52.26970709
1-Jan-14 7.100   0.00407923     −0.70817417    −284.97230573
1-Jan-15 7.050 −0.00230683       3.75858533      828.42777079
1-Jan-20 7.000   0.00741195     −8.87822401 −8,520.0324431
1-Jan-25 6.950 −0.02736125     31.74664902 33,260.580061    
1-Jan-30 6.950 −118.13828171
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The degree of accuracy obtained through iteration is dependent on
the starting point for the first calculation and the number of iterations
allowed as a maximum. There is no way of ensuring that the required
degree of accuracy will be obtained without undertaking very high magni-
tude (and process intensive) calculations in the iterative algorithm. With-
out the comfort of extensive manual review of the results by a person
with a clear understanding of the calculation and its implications, we do
not recommend the use of the iteration approach to derive a solution.

Solving for a System of Linear Equations by Elimination
We now consider again equation (7) derived above, and rearrange it slightly
as equation (8).

(8)

It can be seen that all parameters X and d can be obtained by reference
to values that are already known at the nodes. These are in fact node (or
time-to-maturity) dependent constants. In other words, we have a system
of linear equations from node 1 to N. Simultaneous linear equations can
be solved by substitution. This method of solving linear equations can be
applied to larger sets of linear equations, although we require increased
processing power.

The system of equations can be represented in a N−2 by N+1 matrix
as follows:

X0 2(X0 + X1) X1

X1 2(X1 + X2) X2

… … … …

… … … …

XN−2 2(XN−2 + XN−1) XN−1

XN 1+ bN 2+ 2 XN XN 1++( )bN 1+ XNbN+ +

3
dN 1+ dN–( )

XN

------------------------------– 3
dN 2+ dN 1+–( )

XN 1+

--------------------------------------+=

3
d1 d0–( )

X0

----------------------– 3
d2 d1–( )

X1

----------------------+

3
d2 d1–( )

X1

----------------------– 3
d3 d2–( )

X2

----------------------+

3
dN 1– dN 2––( )

XN 2–

------------------------------------– 3
dN dN 1––( )

XN 1–

------------------------------+
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In essence, if you look at the parameters b for which we are attempt-
ing to solve, this can be laid over the above matrix as follows:

In other words we are looking for a set of values for b0 to bN that will
solve the linear system for each and every node N.

Our basic limitation imposed above is not lifted. We set b0 and bN
equal to 0 in order to apply the natural boundary condition. We can
then substitute our solution for equation/row 1 into equation/row 2. We
perform a similar continuous set of substitutions until we have a solu-
tion for bN−1. This solution can then be substituted backward through
the solved equations to obtain a solution for b1.

A matrix of this form, that is, an upper and lower triangular quad-
rant for which no value is required (observed by the grey shaded area) is
also known as a tri-diagonal matrix. More advanced methods of solving
matrices (and in particular tri-diagonal types) are available. It is outside
the scope of this chapter to cover these methods in detail.16 For the pur-
poses of illustration however, we have prepared a simple example solu-
tion for a small matrix of values, and this appears as an Appendix to this
chapter.

The same values used for the iterative solution were processed using
the elimination solution. The results and their illustrative chart are set
out in Exhibits 7.13 and 7.14, respectively.

On first observation these values appear to be identical to those
obtained using the iterative solution. In fact even at the highest level of
accuracy possible in our iterative solution, we notice a difference in the
values for parameter c when we look at the dates January 1, 2014,
onwards (which appear in the gray boxes in Exhibit 7.13). Although
this is not apparent in the exhibit, the results in the table where numbers
appear with greater accuracy show these and other small differences not
shown in Exhibit 7.14.

Based on these results, we conclude that the technique of solving for
a system of linear equations is superior to an iterative solution. This is
because:

b0 b1 b2

b1 b2 b3

… … …

… … …

bN-2 bN-1 bN

16 Interested readers may wish to consult Burden and Faires, Numerical Analysis.
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EXHIBIT 7.14  Solution Using Tri-Diagonal Method

EXHIBIT 7.13  Tri-Diagonal Solution

Date Rate (d) Parameter a Parameter b Parameter c

1-Jan-00 6.000 −0.00001228   0.00000000   0.00544212
7-Jan-00 6.030   0.00000351 −0.00022106   0.00411577
31-Jan-00 6.050 −0.00000019   0.00003181 −0.00042615
1-Apr-00 6.100 −0.00000001 −0.00000235   0.00137086
1-Jul-00 6.200   0.00000002 −0.00000426   0.00076898
1-Oct-00 6.250 −0.00000001   0.00000117   0.00048462
1-Jan-01 6.300   0.00000000 −0.00000042   0.00055340
1-Jul-01 6.400 −0.00000000   0.00000083   0.00062739
1-Jan-02 6.520   0.00000000 −0.00000126   0.00054853
1-Jan-03 6.610 −0.00000000   0.00000004   0.00010301
1-Jan-05 6.700   0.00000000   0.00000000   0.00013362
1-Jan-06 6.750 −0.00000000   0.00000003   0.00014328
1-Jan-07 6.800   0.00000000 −0.00000010   0.00011518
1-Jan-10 6.900 −0.00000000   0.00000014   0.00015545
1-Jan-11 6.960   0.00000000 −0.00000020   0.00013151
1-Jan-12 7.000 −0.00000000   0.00000023   0.00014041
1-Jan-14 7.100   0.00000000 −0.00000047 −0.00003779
1-Jan-15 7.050 −0.00000000   0.00000013 −0.00016284
1-Jan-20 7.000   0.00000000 −0.00000004   0.00000594
1-Jan-25 6.950 −0.00000000   0.00000002 −0.00002515
1-Jan-30 6.950   0.00000000
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 ■ No starting point for the calculation needs to be determined by the user 
or the system;

 ■ The accuracy of the solution is not dependent on the number of itera-
tive calculations performed; and

 ■ The results do not need the same degree of review to assess their accuracy.

This is not to say that this method is flawless. Even a tri-diagonal meth-
odology is reliant on the degree of precision applied in its calculation. Mod-
ern computing hardware and software have limitations in the size or length
of the floating point numbers that it can process. However if programmed
with care, a typical application can deal with significantly large numbers. 

EMPIRICAL PROOF OF PRECISION

In our cubic spline application (CUBED3) we have chosen C++ as the pro-
gramming language and we have used the C++ ‘long double’ variable type
to store and process our values. A long double is usually anything
between a 74- and 128-bit place holder, depending on the compiler and
the system on which the calculations are performed. Applying some basic
binary mathematics and allowing 1 bit for sign storage we can calculate: 

271 = 2,361,183,241,434,820,000,000

This should be sufficient to provide an adequate level of accuracy for most
cubic spline calculations required of a zero curve application.17

To test this we have performed empirical testing to corroborate our
conclusion using a completely fictitious set of data that was designed to
provide an extreme testing environment and data that is more sensitive to
calculation anomalies than any likely to occur in real life.18 Our fake
input values were chosen to include:

 ■ a large number of nodes (over 100); 
 ■ high oscillations at various points in the curve; and
 ■ various points of flat data.

17 This assurance is based on the fact that a typical yield curve application very, very
rarely has more than 30 nodes. Any application where there are large node numbers
may require higher levels of accuracy.
18 In other words, we use interest rate values that are extreme and unlikely to be ob-
served in a yield curve in practice. Bond traders would be amused if one morning
they discovered that the bond redemption yield curve looked anything like Exhibit
7.15.
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EXHIBIT 7.15  Test Data

EXHIBIT 7.16  Cubic Spline Test Results

A large number of tenors was chosen to compound any rounding
errors that might occur as part of the elimination multiplier. Oscillation at
various points in the curve is used to set up waves that can continue when
they subsequently flow into areas of flat data and which would highlight
errors, if they occur. Flat sections of the curve are used so that any errors
become highly visible.

A graph of this extreme test data is set out in Exhibit 7.15. The
resulting smooth graph after the cubic spline parameter has been calcu-
lated and applied is shown in Exhibit 7.16. Two areas on the graph with
relatively flat or consistent data values have been highlighted in Exhibit
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7.16 as potential areas where calculation error may be observed. These
areas of the graph are isolated and shown in Exhibits 7.17 and 7.18.

In the first area we observe some oscillation. However, this is not
oscillation as a result of calculation errors. This is a smoothing effect that
is required to meet the requirements of a cubic spline and to ensure a
smooth curve. The data between points 63 and 71 is consistently down-
ward sloping but the data then slopes upward again at point 72. The
curve starts to “adapt” at an earlier stage in order to facilitate this change
in direction. Therefore this behavior is unavoidable, but under most
applications for the spot curve does not present a material problem.

EXHIBIT 7.17  Extract 1 (X-Axis Values of Points 63 to 71)

EXHIBIT 7.18  Extract 2 (X-Axis Values of Points 98 to 101)
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The second area of the curve provides another typical cubic spline
example as the curve “adapts” to its new parameters. Once again this is
a natural spline phenomenon and not an error in the calculated values.

Empirical data does not prove beyond a doubt that a cubic spline
method, applied using an appropriate solution technique and precise soft-
ware, will always produce accurate results. Nonetheless we believe that it
is reasonable to assume from the test data set out above that the cubic
spline methodology, used in conjunction with appropriate calculation
tools, provides accurate zero curve results in most fixed-income market
conditions.

A LOOK AT FORWARD RATES

Previous literature has highlighted the use of the cubic spline approach
to model forward curves and its limitations. Certainly a cubic spline dis-
cussion would be incomplete without a look at its application to for-
ward rates. We will use our empirical data to highlight typical forward
rate behavior under the cubic spline technique. Our sample data do not
reflect actual market conditions and represent an extreme data set, to
say the least. However, it does highlight a point with regards to forward
rates that can often be observed sometimes under normal market condi-
tions. To this end we isolate the last sub-set of the data, as shown in
Exhibit 7.16, and plot the forward rates for that data set.

From data that was interpolated using the linear method versus data
interpolated using the cubic spline, a comparison of forwards shows how
the forwards in a cubic spline environment can oscillate. As expected, the
relatively minor oscillations observed first in the zero rates curve are
compounded excessively in the forward rate calculation. The linear inter-
polation approach, shown for comparison purposes at Exhibit 7.19,
eliminates much of the oscillation but of course is not a smooth curve,
which is as undesirable. The user is confronted with the need to balance
the conflicting requirements—a tradeoff is called for and for most practi-
cal applications the cubic spline approach and its smoothing results is
preferred. It remains important however that the user reviews cubic
spline data by looking at both the zero and forward rates. 

Using the actual United Kingdom 10-year zero curve for January 2,
2000, the forward rates have been calculated using cubic spline and lin-
ear interpolation and compared in Exhibits 7.20 and 7.21, respectively.
There is no observed reason to favor the latter approach over the former.
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EXHIBIT 7.19  Forward Rate Comparison (Linear versus Cubic)

EXHIBIT 7.20  Actual United Kingdom 10-Year Zero and Forward Rates—
Cubic Spline

Improvements to the Basic Approach
As a result of the drawback when fitting the forward curve,  the basic
technique has been improved to remove the oscillation effect at longer
maturities. As we saw from the test results presented earlier, the oscilla-
tion of a spline is partly a function of the number of nodes used. The
paradox with this factor is that in practice, at very long maturities the
forward (and also the spot) curve would be expected to be reasonably
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flat. To remove the oscillation, as described first by Fisher, Nychka, and
Zervos, this involves the addition of a roughness penalty when minimiz-
ing the sums of squares.19

Waggoner introduced a variable roughness penalty, which enabled
the approach to retain the flexibility at the short end and reduce oscilla-
tion at the long end.20 Using the Waggoner approach enables users to
retain the flexibility and ease of the cubic spline approach as well as a
more realistic forward curve. 

Anderson and Sleath state that the advantage of the spline approach
over parametric methods is that separate segments of the spline can be
adjusted independently of each other.21 The significance of this is that a
change in market levels at one end of the term structure will not affect
significantly any other parts of the curve. This is a drawback of the
parametric methods. Ironically Anderson and Sleath modify the Wag-
goner model in a way that would appear to incorporate elements of the
parametric approach, and their results appear to improve on the earlier
works.

EXHIBIT 7.21  Actual United Kingdom 10-Year Zero and Forward Rates—
Linear Interpolation

19 Fisher, Nychka, and Zervos, “Fitting the Term Structure of Interest Rates with
Smoothing Splines.”
20 Waggoner, “Spline Methods for Extracting Interest Rate Curves from Coupon
Bond Prices.”
21 Anderson and Sleath, “New Estimates of the UK Real and Nominal Yield
Cuirves.”
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CONCLUSION

The purpose of this chapter has been to present an accessible account of
how the cubic spline methodology of term structure estimation could be
implemented by users involved in any area of the debt capital markets.
The technique is straightforward and quick, and is valid for a number of
applications, most of which are “normal” or conventional yield curves.
For example, users are recommended to use it when curves are posi-
tively sloping, or when there are relatively few humps in the curve. The
existence of humps along the short or medium terms of the curve can
cause excessive oscillation in the forward curve but the zero curve may
still be used for valuation or relative value purposes.

Oscillation is a natural effect of the cubic spline methodology and
its existence does not impair its effectiveness under many conditions. If
observed rates produce very humped curves, the fitted zero-curve using
cubic spline does not produce usable results. For policy-making pur-
poses, for example as used in central banks, and also for certain  market
valuation purposes, users require forward rates with minimal oscilla-
tion.  In such cases however, the Waggoner or Anderson-Sleath models
will overcome this problem. We therefore recommend the cubic spline
approach under most market conditions.

APPENDIX

Example matrix solution based on Gaussian elimination.
We will solve for the following values (where the values of X have

already been calculated).

First we construct our matrix as follows.

x X y

0.90 0.40 1.30
1.30 0.60 1.50
1.90 0.20 1.85
2.10 0.90 2.10
3.00 0.80 1.95
3.80 0.50 0.40
4.30 0.25
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Where b1 is set to zero this provides the following values.

In turn we can substitute row 1 into row 2 to obtain:

Similar substitutions, and the fact that b7 is constrained as zero, yield
the matrix below.

This means that we can solve for b6. Once we have a solution for b6,
we can solve for b5 and so on. As a final result, we get the following val-
ues for parameter b.

Parameters a and c can be determined directly from the values of b
above.

b1 b2 b3 b4 b5 b6 b7

0.0 2.0 0.6   0.3

0.6 1.6 0.2   2.0

0.2 2.2 0.9 −4.3

0.9 3.4 0.8 −5.3

0.8 2.6 0.5   4.9

b1 b2 b3 b4 b5 b6 b7

0.0 2.0 0.6   0.3

0.0 4.7 0.7   6.4

0.2 2.2 0.9 −4.3

0.9 3.4 0.8 −5.3

0.8 2.6 0.5   4.9

b1 b2 b3 b4 b5 b6 b7

0.0 2.0 0.6        0.3

0.0 4.7   0.7        6.4

0.0 51.4   21.3  −107.0

  0.0 172.9   45.7  −196.4

    0.0 516.2 0.0 1,258.0

b1 b2 b3 b4 b5 b6 b7

0.0 −0.338 1.544 −1.344 −1.780 2.437 0.0
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here are two critical components to an interest rate risk management
system. The first component is an estimate of the price sensitivity of

each fixed income security and derivative position to changes in interest
rates. This estimate is typically obtained by changing rates by a small
number of basis points and calculating based on a valuation model how
the price changes. The result is an effective or option-adjusted duration
measure. If the valuation model employed is poor, the resulting duration
measure will not be a good estimate of the price sensitivity of an instru-
ment to rate changes. A critical input to valuation models for cash mar-
ket instruments with embedded options and option-like derivatives is
the estimated yield volatility. The second component of an interest rate
risk management system is the estimated yield volatility to assess the

T

* We are grateful for the many constructive comments of George Chacko of the Har-
vard Business School.
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188 INTEREST RATE AND TERM STRUCTURE MODELING

potential loss exposure. Consequently, yield volatility estimates play a
dual role in an interest rate risk management system.

The previous chapters in this book discussed the measurement of
interest rate exposure and the implementation of interest rate risk con-
trol strategies based on some expected yield volatility. The focus of the
earlier chapters was not on the measurement of yield volatility. In this
chapter, we look at how to measure and forecast yield volatility. Volatil-
ity is measured in terms of the standard deviation or variance. We begin
this chapter with an explanation of how yield volatility as measured by
the daily percentage change in yields is calculated from historical yields.
We will see that there are several issues confronting a trader or investor
in measuring historical yield volatility. Next we turn to modeling and
forecasting yield volatility, looking at the state-of-the-art statistical
techniques that can be employed.

CALCULATING THE STANDARD DEVIATION FROM
HISTORICAL DATA

The variance of a random variable using historical data is calculated
using the following formula:

(1)

and then

where

Our focus in this chapter is on yield volatility. More specifically, we
are interested in the percentage change in daily yields. So, Xt will denote
the percentage change in yield from day t and the prior day, t

 

−1. If we
let yt denote the yield on day t and yt

 

−1 denote the yield on day t

 

−1, then
Xt which is the natural logarithm of percentage change in yield between
two days, can be expressed as:

Xt = observation t on variable X
X = the sample mean for variable X
T = the number of observations in the sample

Variance
Xt X–( )2

T 1–
------------------------

t 1=

T

∑=

Standard deviation Variance=
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For example, on 10/18/95 the Treasury 30-year zero rate was 6.56%
and on 10/19/95 it was 6.59%. Therefore, the natural logarithm of X
for 10/19/95 is:

To illustrate how to calculate a daily standard deviation from his-
torical data, consider the data in Exhibit 8.1 which show the yield on
Treasury 30-year zeros from 10/8/95 to 11/12/95 in the second column.
From the 26 observations, 25 days of daily percentage yield changes are
calculated in the third column. The fourth column shows the square of
the deviations of the observations from the mean. The bottom of
Exhibit 8.1 shows the calculation of the daily mean for the 25 observa-
tions, the variance, and the standard deviation. The daily standard devi-
ation is 0.6360%. 

The daily standard deviation will vary depending on the 25 days
selected. For example, the daily yields from 8/20/95 to 9/24/95 were
used to generate 25 daily percentage yield changes. The computed daily
standard deviation was 0.8453%.

Determining the Number of Observations
In our illustration, we used 25 observations for the daily percentage
change in yield. The appropriate number depends on the situation at
hand. For example, traders concerned with overnight positions might
use the 10 most recent days (i.e., two weeks). A bond portfolio manager
who is concerned with longer term volatility might use 25 days (about
one month).

The selection of the number of observations can have a significant
effect on the calculated daily standard deviation. This can be seen in
Exhibit 8.2 which shows the daily standard deviation for the Treasury
30-year zero, Treasury 10-year zero, Treasury 5-year zero, and 3-month
LIBOR for 60 days, 25 days, 10 days, and 683 days ending 11/12/95.

Annualizing the Standard Deviation
If serial correlation is not significant, the daily standard deviation can
be annualized by multiplying it by the square root of the number of days
in a year. That is,

Xt 100 Ln yt yt 1–⁄( )[ ]=

X 100 Ln 6.593 6.555⁄( )[ ] 0.5780= =

Daily standard deviation Number of days in a year ×
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EXHIBIT 8.1  Calculation of Daily Standard Deviation Based on 25 Daily 
Observations for 30-Year Treasury Zero 
(October 9, 1995 to November 12, 1995)

t Date yt Xt =100[Ln(yt /yt-1)] (Xt

 

 − X)2

0 08-Oct-95 6.694 
1 09-Oct-95 6.699   0.06720 0.02599 
2 10-Oct-95 6.710   0.16407 0.06660 
3 11-Oct-95 6.675

 

−0.52297 0.18401 
4 12-Oct-95 6.555

 

−1.81311 2.95875 
5 15-Oct-95 6.583   0.42625 0.27066 
6 16-Oct-95 6.569

 

−0.21290 0.01413 
7 17-Oct-95 6.583   0.21290 0.09419 
8 18-Oct-95 6.555

 

−0.42625 0.11038 
9 19-Oct-95 6.593   0.57804 0.45164 
10 22-Oct-95 6.620   0.40869 0.25270 
11 23-Oct-95 6.568

 

−0.78860 0.48246 
12 24-Oct-95 6.575   0.10652 0.04021 
13 25-Oct-95 6.646   1.07406 1.36438 
14 26-Oct-95 6.607

 

−0.58855 0.24457 
15 29-Oct-95 6.612   0.07565 0.02878 
16 30-Oct-95 6.575

 

−0.56116 0.21823 
17 31-Oct-95 6.552

 

−0.35042 0.06575 
18 01-Nov-95 6.515

 

−0.56631 0.22307 
19 02-Nov-95 6.533   0.27590 0.13684 
20 05-Nov-95 6.543   0.15295 0.06099 
21 06-Nov-95 6.559   0.24424 0.11441 
22 07-Nov-95 6.500

 

−0.90360 0.65543 
23 08-Nov-95 6.546   0.70520 0.63873 
24 09-Nov-95 6.589   0.65474 0.56063
25 12-Nov-95 6.539

 

−0.76173 0.44586

Total

 

−2.35020     9.7094094

Sample mean X 2.35020–
25

------------------------ 0.09401%–= = =

Variance 9.7094094
25 1–

---------------------------- 0.4045587= =

Std 0.4045587 0.6360%= =
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Market practice varies with respect to the number of days in the year
that should be used in the annualizing formula above. Typically, either
250 days, 260 days, or 365 days are used.

Thus, in calculating an annual standard deviation, the manager must
decide on:

1. The number of daily observations to use
2. The number of days in the year to use to annualize the daily standard

deviation.

Exhibit 8.2 shows the difference in the annual standard deviation
for the daily standard deviation based on the different number of obser-

EXHIBIT 8.2  Comparison of Daily and Annual Volatility for a 
Different Number of Observations
(Ending Date November 12, 1995) for Various Instruments

Number. of
Observations

Daily Standard
Deviation (%)

Annualized Standard Deviation (%)

250 Days 260 Days 365 Days

Treasury 30-Year Zero
683 0.4902   7.75   7.90   9.36
  60 0.6283   9.93 10.13 12.00
  25 0.6360 10.06 10.26 12.15
  10 0.6242   9.87 10.06 11.93

 Treasury 10-Year Zero
683 0.7498 11.86 12.09 14.32
  60 0.7408 11.71 11.95 14.15
  25 0.7092 11.21 11.44 13.55
  10 0.7459 11.79 12.03 14.25

Treasury 5-Year Zero
683 1.0413 16.46 16.79 19.89
  60 0.8267 13.07 13.33 15.79
  25 0.7224 11.42 11.65 13.80
  10 0.8346 13.20 13.46 15.94

3-Month LIBOR
683 0.7496 11.85 12.09 14.32
  60 0.2994   4.73   4.83   5.72
  25 0.1465   2.32   2.36   2.80
  10 0.2366   3.74   3.82   4.52
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vations and using 250 days, 260 days, and 365 days to annualize.
Exhibit 8.3 compares the 25-day annual standard deviation for two dif-
ferent time periods for the 30-year zero, 10-year zero, 5-year zero, and
3-month LIBOR.

Reexamination of the Mean
Let’s address the question of what mean should be used in the calcula-
tion of the forecasted standard deviation. Suppose at the end of 10/24/
95 a trader is interested in a forecast for volatility using the 10 most
recent days of trading and updating that forecast at the end of each
trading day. What mean value should be used?

The trader can calculate a 10-day moving average of the daily per-
centage yield change. Exhibit 8.1 shows the daily percentage change in
yield for the Treasury 30-year zero from 10/9/95 to 11/12/95. To calcu-
late a moving average of the daily percentage yield change on 10/24/95,
the trader would use the 10 trading days from 10/11/95 to 10/24/95. At
the end of 10/25/95, the trader would calculate the 10-day average by
using the percentage yield change on 11/25/95 and would exclude the
percentage yield change on 10/11/95. That is, the trader would use the
10 trading days from 10/12/95 to 10/25/95. 

EXHIBIT 8.3  Comparison of Daily Standard Deviation Calculated for
Two 25-Day Periods for Various Instruments

Dates
Daily Standard
Deviation(%)

Annualized Standard Deviation(%)

From To 250 Days 260 Days 365 Days

Treasury 30-Year Zero
10/8/95 11/12/95 0.6360 10.06 10.26 12.15 
  8/20/95   9/24/95 0.8453 13.36 13.63 16.15 

Treasury 10-Year Zero
10/8/95 11/12/95 0.7092 11.21 11.44 13.55
  8/20/95   9/24/95 0.9045 14.30 14.58 17.28 

Treasury 5-Year Zero
10/8/95 11/12/95 0.7224 11.42 11.65 13.80
  8/20/95   9/24/95 0.8145 12.88 13.13 15.56

3-Month LIBOR
10/8/95 11/12/95 0.1465   2.32   2.36   2.80 
  8/20/95   9/24/95 0.2523   3.99   4.07   4.82 
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Exhibit 8.4 shows the 10-day moving average calculated from 10/
24/95 to 11/12/95. Notice the considerable variation over this period.
The 10-day moving average ranges from 

 

−0.203% to 0.079%. For the
period from 4/15/93 to 11/12/95, the 10-day moving average ranged
from

 

−0.617% to 0.603%.
Rather than using a moving average, it is more appropriate to use

an expectation of the average. Longerstacey and Zangari argue that it
would be more appropriate to use a mean value of zero.1 In that case,
the variance as given by equation (1) simplifies to:

(2)

Weighting of Observations
The daily standard deviation given by equations (1) and (2) assigns an
equal weight to all observations. So, if a trader is calculating volatility
based on the most recent 10 days of trading, each day is given a weight
of 10%. 

EXHIBIT 8.4  10-Day Moving Daily Average for Treasury 30-Year Zero

10 Trading Days Ending Daily Average (%)

24-Oct-95

 

−0.203
25-Oct-95

 

−0.044
26-Oct-95   0.079 
29-Oct-95   0.044 
30-Oct-95   0.009
31-Oct-95

 

−0.047
01-Nov-95

 

−0.061
02-Nov-95

 

−0.091
05-Nov-95

 

−0.117
06-Nov-95

 

−0.014
07-Nov-95

 

−0.115
08-Nov-95

 

−0.152
09-Nov-95

 

−0.027
12-Nov-95

 

−0.111

1 Jacques Longerstacey and Peter Zangari, 

 

Five Questions about RiskMetrics

 

TM, JP Morgan Research 
Publication 1995.

Variance
Xt

2

T 1–
-------------

t 1=

T

∑=
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For example, suppose that a trader is interested in the daily volatil-
ity of the Treasury 30-year zero yield and decides to use the 10 most
recent trading days. Exhibit 8.5 reports the 10-day volatility for various
days using the data in Exhibit 8.1 and the formula for the variance
given by equation (2). For the period 4/15/93 to 11/12/95, the 10-day
volatility ranged from 0.164% to 1.330%.

In April 1995, the Basle Committee on Banking Supervision at the
Bank for International Settlements proposed that volatility (as measured
by the standard deviation) be calculated based on an equal weighting of
daily historical observations using one year of observations.2 Moreover,
the committee proposed that volatility estimates should be updated at
least quarterly.3

However, there is reason to suspect that market participants give
greater weight to recent movements in yield when determining volatility.
Moreover, what has been observed in several studies of the stock market
is that high periods of volatility are followed by high periods of volatility. 

EXHIBIT 8.5  Moving Daily Standard Deviation Based on 10 Days of Observations

10 Trading Days Ending Daily Standard Deviation (%)

24-Oct-95 0.757
25-Oct-95 0.819
26-Oct-95 0.586
29-Oct-95 0.569
30-Oct-95 0.595
31-Oct-95 0.602
01-Nov-95 0.615
02-Nov-95 0.591
05-Nov-95 0.577
06-Nov-95 0.520
07-Nov-95 0.600
08-Nov-95 0.536
09-Nov-95 0.544
12-Nov-95 0.600

2  The proposal, entitled “The Supervisory Treatment of Market Risks,” is an amend-
ment to the 1988 Basle Capital Accord.
3 RiskMetricsTM has a “Special Regulatory Dataset” that incorporates the 1-year
moving average proposed by the Basle Committee. Rather than updating at least
quarterly as proposed by the Basle Committee, the dataset is updated daily.
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To give greater importance to more recent information, observa-
tions further in the past should be given less weight. This can be done by
revising the variance as given by equation (2) as follows:

(3)

where Wt is the weight assigned to observation t such that the sum of
the weights is equal to 1 (i.e., ∑ Wt = 1) and the further the observation
from today, the lower the weight.

The weights should be assigned so that the forecasted volatility
reacts faster to a recent major market movement and declines gradually
as we move away from any major market movement. The approach by
JP Morgan in RiskMetrics™ is to use an exponential moving average.
The formula for the weight Wt in an exponential moving average is:

where β is a value between 0 and 1. The observations are arrayed so
that the closest observation is t = 1, the second closest is t = 2, etc.

For example, if β is 0.90, then the weight for the closest observation
(t = 1) is:

W1 = (1 − 0.90) (0.90)1 = 0.09 

For t = 5 and β equal to 0.90, the weight is:

W5 = (1 − 0.90) (0.90)5 = 0.05905

The parameter β is measuring how quickly the information con-
tained in past observations is “decaying” and hence is referred to as the
“decay factor.” The smaller the β, the faster the decay. What decay fac-
tor to use depends on how fast the mean value for the random variable
X changes over time. A random variable whose mean value changes
slowly over time will have a decay factor close to 1. A discussion of how
the decay factor should be selected is beyond the scope of this chapter.4

4 A technical description is provided in RiskMetrics™—Technical Document, pp.
77–79.

Variance
WtXt

2

T 1–
---------------

t 1=

T

∑=

Wt 1 β–( )βt
=
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MODELING AND FORECASTING YIELD VOLATILITY

Generally speaking, there are two ways to model yield volatility. The first
way is by estimating historical yield volatility by some time series model.
The resulting volatility is called historical volatility. The second way is to
estimate yield volatility based on the observed prices of interest rate
derivatives. Yield volatility calculated using this approach is called
implied volatility. In this section, we discuss these two approaches, with
more emphasis on historical volatility. As will be explained later, com-
puting implied volatility from interest rate derivatives is not as simple
and straightforward as from derivatives of other asset classes such as
equity. Apart from assuming that a particular option pricing model is
correct, we also need to model the time evolution of the complete term
structure and volatilities of yields of different maturities. This relies on
state-of-the-art modeling technique as well as superior computing power.

Historical Volatility
We begin the discussion with a general stochastic process of which yield,
or interest rate, is assumed to follow:

(4)

where y is the yield, µ is the expected instantaneous change (or drift) of
yield, σ is the instantaneous standard deviation (volatility), and W is a
standard Brownian motion such that the change in W (dW) is normally
distributed with mean zero and variance of dt. Both µ and σ are func-
tions of the current yield y and time t.

Since we focus on volatility in this chapter, we leave the drift term in
its current general form. It can be shown that many of the volatility
models are special cases of this general form. For example, assuming
that the functional form of volatility is

(5)

such that the yield volatility is equal to the product of a constant, σ0,
and the current yield level, we can rewrite equation (4) as5

(6)

5 Equation (6) is obtained by application of Ito’s Lemma. We omit the details here.

dy µ y t,( )dt σ y t,( )dW+=

σ y t,( ) σ0y=

dlny µ' y t,( )dt σ0dW+=
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The discrete time version of this process will be

(7)

Thus, when we calculate yield volatility by looking at the natural loga-
rithm of percentage change in yield between two days as in the earlier
section, we are assuming that yield follows a log-normal distribution,
or, the natural logarithm of yield follows a normal distribution. σ0, in
this case, can be interpreted as the proportional yield volatility, as the
yield volatility is obtained by multiplying σ0 with the current yield. In
this case, yield volatility is proportional to the level of the yield. We call
the above model the Constant Proportional Yield Volatility Model (CP).

This simple assumption offers many advantages. Since the natural
logarithm of a negative number is meaningless, a log-normal distribu-
tion assumption for yield guarantees that yield is always non-negative.
Evidence also suggests that volatility of yield increases with the level of
yield. A simple intuition is for scale reasons. Thus, while the volatility of
changes in yield is unstable over time since the level of yield changes,
the volatility of changes in natural logarithm of yield is relatively stable,
as it already incorporates the changes in yield level. As a result, the nat-
ural logarithm of yield can be a more useful process to examine.6

A potential drawback of the CP model is that it assumes that the
proportional yield volatility itself is constant, which does not depend on
time nor on the yield level. In fact, there exists a rich class of yield vola-
tility models that includes the CP model as a special case. We call this
group the Power Function Model.7

Power Function Model
For simplicity of exposition, we write the yield volatility as σt, which is
understood to be a function of time and level of yield. For example,
consider the following representation of yield volatility:

(8)

In this way, yield volatility is proportional to a power function of yield.
The following are examples of the volatility models assumed in some

6 See Thomas S. Coleman, Lawrence Fisher, and Roger G. Ibbotson, “A Note on In-
terest Rate Volatility,” Journal of Fixed Income (March 1993), pp. 97–101, for a
similar conclusion.
7 In the finance literature, this is also known as the Constant Elasticity of Variance
Model.

lnyt 1+ lnyt µ' σ0 Wt 1+ Wt–( )+ +=

σt σ0yt 1–
γ=
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well known interest rate models, which can be represented as special
cases of equation (8): 

1. γ = 0: Vasicek,8 Ho-Lee9

2. γ = 0.5: Cox-Ingersoll-Ross (CIR)10

3. γ = 1: Black,11 Brennan-Schwartz12

The Vasicek model and Ho-Lee model maintain an assumption of a
normally distributed interest rate process. Simply speaking, yield vola-
tility is assumed to be constant, independent of time, and independent
of yield level. Theoretically, when the interest rate is low enough while
yield volatility remains constant, this model allows the interest rate to
go below zero. 

The CIR model assumes that yield volatility is a constant multiple of
the square root of yield. Its volatility specification is thus also known as
the Square Root Model. Since the square root of a negative number is
meaningless, the CIR model does not allow yield to become negative.
Strictly speaking, the functional form of equation (8) only applies to the
instantaneous interest rate, but not to any yield of longer maturities within
the CIR framework. To be specific, when applied to, say, the 10-year yield,
yield volatility is obtained from the stochastic process of the 10-year yield,
which can be derived from the closed-form solution for the bond price. To
simplify the discussion, we go with the current simple form instead.

The volatility assumption in the Black model and Brennan-Schwartz
model is equivalent to the previous CP model. In other words, yield is
assumed to be log-normally distributed with constant proportional yield
volatility.

Many of these functional forms for yield volatility are adopted prima-
rily because they lead to closed-form solutions for pricing of bonds, bond
options, and other interest rate derivatives, as well as for simplicity and
convenience. There is no simple answer for which form is the best. How-
ever, it is generally thought that γ = 0, or a normal distribution with con-
stant yield volatility, is an inappropriate description of an interest rate

8 Oldrich Vasicek, “An Equilibrium Characterization of the Term Structure,” Jour-
nal of Financial Economics (1977), pp. 177–188.
9 Thomas S.Y. Ho and Sang-Bin Lee, “Term Structure Movements and Pricing Inter-
est Rate Contingent Claims,” Journal of Finance (1986), pp. 1011–1029.
10 John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross, “A Theory of the Term
Structure of Interest Rates,” Econometrica (1985), pp. 385–407.
11 Fischer Black, “The Pricing of Commodity Contracts,” Journal of Financial Eco-
nomics (1976), pp. 167–179.
12 Michael Brennan and Eduardo Schwartz, “A Continuous Time Approach to the
Pricing of Bonds,” Journal of Banking and Finance (1979), pp. 133–155.

8-Fabozzi/Lee  Page 198  Thursday, August 29, 2002  10:03 AM

http://abcbourse.ir/


Measuring and Forecasting Yield Volatility 199

process, even though the occasions of observing negative interest rate in
the model is found to be rare. As a result, many practitioners adopt the
CP model, as it is straightforward enough, while it eliminates the draw-
back of the normal distribution.

One way to determine which yield volatility functional form to use is
to empirically estimate the model with historical data. To illustrate, we use
the 3-month, 10-year, and 30-year spot yields as examples. These yields
are obtained by spline fitting the yield curve of Treasury strips every day
within the sample period. We use the daily data from January 1, 1986 to
July 31, 1997. To be consistent with the previous section, we assume that
the average daily yield change is zero. Thus, the model to be estimated is:

(9)

where E[.] denotes the statistical expectation operator. The econometric
technique employed is the Maximum Likelihood Estimation (MLE).13

We assume a conditional normal distribution for changes in yield, after
the dependence of volatility on level of yield has been incorporated. The
details of this technique are beyond the scope of this chapter.14 The
results are reported in Exhibit 8.6, where an 8.00% yield is written as
0.08, for example.

Volatility of yields of all three maturities are found to increase with
the level of yield, but to a different extent. As the results suggest, assuming
the same value of γ for yields of all maturities can be inappropriate. For
the 3-month spot yield, γ is found to be about 0.25, significantly below the
0.5 assumed in the CIR model. For the 10-year spot yield, γ is about 0.57,
close to CIR’s assumption. Finally, for the 30-year spot yield, γ is about

13 The model can also be estimated by Generalized Method of Moments (GMM),
which does not impose any distributional assumption. We use MLE here in order to
be consistent with the estimation of GARCH models to be discussed later. See K.C.
Chan, G. Andrew Karolyi, Francis A. Longstaff, and Anthony B. Sanders, “An Em-
pirical Comparison of Alternative Models of the Short-Term Interest Rate,” Journal
of Finance (July 1992), pp. 1209–1227, for a similar treatment. Also see Timothy G.
Conley, Lars Peter Hansen, Erzo G.J. Luttmer, and José A. Scheinkman, “Short-
Term Interest Rates as Subordinated Diffusions,” Review of Financial Studies (Fall
1997), pp. 525–577, for a more rigorous treatment.
14 Readers can consult James Hamilton, Time Series Analysis (Princeton, NJ:
Princeton University Press, 1994). Also, there is some evidence that a conditional
t-distribution is more appropriate for interest rate data. For simplicity, we main-
tain the conditional normal here.

yt yt 1–– εt=
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1.27, significantly above the value of 1 assumed in the CP model. Further-
more, as the previous section mentioned, using different time periods can
lead to different estimates. For instance, the behavior of interest rates in the
late 1970s and the early 1980s were very different from those in the last
decade. As a result, one should not be surprised that the dependence of vol-
atility on the yield level might appear to be different from the last decade.

To illustrate the use of the Power Function Model, Exhibit 8.7 plots
the forecasted volatility of the 30-year spot yield based on the estimates
in Exhibit 8.6. For comparison purposes, we also plot the forecasted
volatility when we impose the restriction of γ = 1. In the latter case, we
are actually estimating the constant proportional yield volatility, σ0,
using the whole sample period. The value denotes the yield volatility on
each day, annualized by 250 days.

* t-statistics are reported in parentheses. 

EXHIBIT 8.7  250-Day Annualized Yield Volatility of 30-Year Spot Yield: 
Power Function Model

EXHIBIT 8.6  Estimation of Power Function Models*

3-Month Treasury Bill 10-Year Treasury Zero 30-Year Treasury Zero

σ0 0.0019 0.0027 0.0161

(12.31)      (11.00)      (5.58)    

γ 0.2463 0.5744 1.2708

(8.88)    (15.71)      (18.03)      
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As shown in Exhibit 8.7, using the CP model with constant propor-
tional yield volatility (γ = 1) does not significantly differ from using the
estimated value of γ = 1.27.

One critique of the Power Function Model is the fact that while it
allows volatility to depend on the yield level, it does not incorporate the
observation that a volatile period tends to be followed by another vola-
tile period, a phenomenon known as volatility clustering. Nor does it
allow past yield shocks to affect current and future volatility. To tackle
these problems, we introduce a very different class of volatility model-
ing and forecasting tool.

Generalized Autoregressive Conditional 
Heteroskedasticity Model
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model
is probably the most extensively applied family of volatility models in
empirical finance. It is well known that statistical distributions of many
financial prices and returns series exhibit fatter tails than a normal dis-
tribution. These characteristics can be captured with a GARCH model.
In fact, some well-known interest rate models, such as the Longstaff-
Schwartz model, adopt GARCH to model yield volatility, which is
allowed to be stochastic.15 The term “conditional” means that the value
of the variance depends on or is conditional on the information avail-
able, typically by means of the realized values of other random vari-
ables. The term “heteroskedasticity” means that the variance is not the
same for all values of the random variable at different time periods.

If we maintain the assumption that the average daily yield change is
zero, as before, the standard GARCH(1,1) model can be written as:

(10)

where εt is just the daily yield change, interpreted as yield shock, E[.]
denotes the statistical expectation operator, a0, a1, and a2 are parame-
ters to be estimated. In this way, yield volatility this period depends on

15 Francis A. Longstaff and Eduardo S. Schwartz, “Interest Rate Volatility and the
Term Structure: A Two-Factor General Equilibrium Model,” Journal of Finance
(1992), pp. 1259–1282. Also see Francis A. Longstaff and Eduardo S. Schwartz,
“Implementation of the Longstaff-Schwartz Interest Rate Model,” Journal of Fixed
Income (1993), pp. 7–14 for practical implementation of the model and how yield
volatility is modeled by GARCH.

yt yt 1–– εt=

E εt
2[ ] σt

2 a0 a1εt 1–
2 a2σt 1–

2+ += =
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yield shock as well as yield volatility in the last period. The GARCH
model also estimates the long-run equilibrium variance, ω, as

(11)

The GARCH model is popular not only for its simplicity in specifi-
cation and its parsimonious nature in capturing time series properties of
volatilities, but also because it is a generalization of some other mea-
sures of volatility. For example, it has been shown that equal-weighted
rolling sample measure of variance and exponential smoothing scheme
of volatility measure are both special cases of GARCH, but with differ-
ent restrictions on the parameters. Other technical details of GARCH
are beyond the scope of this chapter.16

Experience has shown that a GARCH(1,1) specification generally
fits the volatility of most financial time series well, and is quite robust.
The unknown parameters can again be estimated using MLE. The esti-
mated models for the yields on 3-month Treasury bills and the 10-year
and 30-year Treasury zeros are reported in Exhibit 8.8. Again, we plot
the forecasted yield volatility, annualized by 250 days, of the 30-year
spot rate in Exhibit 8.9 as an example.

16 See, for example, Robert F. Engle, “Statistical Models for Financial Volatility,” Fi-
nancial Analysts Journal (1993), pp. 72–78; and Wai Lee and John Yin, “Modeling
and Forecasting Interest Rate Volatility with GARCH,” Chapter 20 in Frank J.
Fabozzi (ed.), Advances in Fixed Income Valuation Modeling and Risk Management
(New Hope, PA: FJF Associates, Pennsylvania, 1997), for an extensive discussion of
GARCH as well as many other extensions.

EXHIBIT 8.8  Estimation of GARCH(1,1) Models

3-Month Treasury Bill 10-Year Treasury Zero 30-Year Treasury Zero

a0 1.6467 × 10−8 3.0204 × 10−8 1.6313 × 10−8

(17.85)                 (1.59)               (8.65)               

a1 0.0878           0.0896           0.0583           

(15.74)                 (12.19)                 (12.44)                 

a2 0.8951           0.8441           0.9011           

(211.36)                   (122.12)                   (123.43)                   

E εt
2[ ] ω

a0

1 a1– a2–
--------------------------= =
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EXHIBIT 8.9  250-Day Annualized Yield Volatility of 30-Year Spot Yield: 
GARCH(1,1) Model

One can immediately see that GARCH volatility is very different
from the previous Power Function volatility. The reason is that GARCH
incorporates the random and often erratic yield shocks as well as serial
dependence in yield volatility into the volatility model; in contrast, the
Power Function model only allows yield volatility to depend on the level
of yield, without considering how past yield shocks and volatilities may
affect the future volatility. The phenomenon of volatility clustering is
well captured by GARCH, as revealed in Exhibit 8.9. On the other
hand, the above GARCH(1,1) model does not consider the possible
dependence of yield volatility on the level of yield. Thus, theoretically,
GARCH volatilities do allow yields to become negative, which is an
undesirable feature.

Power Function—GARCH Models
To capture the strength of both classes of models, one may consider
combining the two into a more general form, at the expense of more
complicated modeling and estimation, however. One way is to adopt the
functional form of the Power Function model, while allowing the pro-
portional yield volatility to follow a GARCH process. For example:
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(12)

With the above specification, yield volatility still depends on the
level of yield, while past shocks and volatility affect current and future
volatility through the proportional yield volatility, σ0, which is now
time varying instead of being a constant.17 The estimation results are
reported in Exhibit 8.10.

A noticeable difference between Exhibit 8.6 and Exhibit 8.10 is the fact
that once the proportional yield volatility is modeled as a GARCH(1,1), γ
assumes a smaller value than when yield volatility is only modeled as a
power function of yield. In fact,γ for all maturities are all below 0.5, as
assumed by the CIR model. This suggests that it is important to incor-
porate the dependence of current yield volatility on past information, or
the sensitivity of yield volatility on level of yield may be overstated. For
comparison purposes, Exhibit 8.11 plots the 250-day annualized yield
volatility of the 30-year spot rate based on the estimated model in
Exhibit 8.10.

EXHIBIT 8.10  Estimation of Power Function—GARCH(1,1) Models

3-Month Treasury Bill 10-Year Treasury Zero 30-Year Treasury Zero

a0 8.6802 × 10−7 3.6185 × 10−7 3.8821 × 10−7

(1.59)               (1.23)               (1.37)               

a1 0.1836           0.0556           0.0717           

(12.73)                 (11.07)                 (14.20)                 

a2 0.6424           0.8920           0.8015           

(34.53)                 (48.52)                 (5.40)               

γ 0.2094           0.3578           0.3331           

(10.33)                 (28.20)                 (6.94)               

17 See Robin J. Brenner, Richard H. Harjes, and Kenneth F. Kroner, “Another Look
at Models of the Short-Term Interest Rate,” Journal of Financial and Quantitative
Analysis (March 1996), pp. 85–107, for a similar treatment and extensions.

yt yt 1–– εt=

σt σ0 t, yt 1–
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EXHIBIT 8.11  250-Day Annualized Yield Volatility of 30-Year Spot Yield: 
Power Function—GARCH(1,1) Model

Implied Volatility
The second way to estimate yield volatility is based on the observed prices
of interest rate derivatives, such as options on bond futures, or interest
rate caps and floors. Yield volatility calculated using this approach is
called implied volatility.

The implied volatility is based on some option pricing model. One
of the inputs to any option pricing model in which the underlying is a
Treasury security or Treasury futures contract is expected yield volatil-
ity. If the observed price of an option is assumed to be the fair price and
the option pricing model is assumed to be the model that would gener-
ate that fair price, then the implied yield volatility is the yield volatility
that when used as an input into the option pricing model would produce
the observed option price. Because of their liquidity, options on Trea-
sury futures, Eurodollar futures, and caps and floors on LIBOR are typ-
ically used to extract implied volatilities.

Computing implied volatilities of yield from interest rate derivatives
is not as straight forward as from derivatives of, say, stock. Later in this
section, we will explain that these implied volatilities are not only
model-dependent, but on some occasions they are also difficult to inter-
pret, and can be misleading as well. For the time being, we follow the
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common practice in the industry of using the Black option pricing
model for futures.18

Although the Black model has many limitations and inconsistent
assumptions, it has been widely adopted. Traders often quote the
exchange-traded options on Treasury or Eurodollar futures in terms of
implied volatilities based on the Black model. These implied volatilities
are also published by some investment houses, and are available through
data vendors. For illustration purposes, we use the data of CBOT traded
call options on 30-year Treasury bond futures as of April 30, 1997. The
contract details, as well as the extracted implied volatilities based on the
Black model, are listed in Exhibit 8.12.

.

18 Black, “The Pricing of Commodity Contracts.”

EXHIBIT 8.12  Call Options on 30-Year Treasury Bond Futures on April 30, 1997

Delivery
Month

Futures
Price

Strike
Price

Option
Price

Implied Price
Volatility Duration

Implied Yield
Volatility

1997:6 109.281 105   4.297   9.334 9.57 0.975
1997:6 109.281 106   3.328   9.072 9.57 0.948
1997:6 109.281 107   2.406   8.811 9.57 0.921
1997:6 109.281 108   1.594   8.742 9.57 0.913
1997:6 109.281 109   0.938   8.665 9.57 0.905
1997:6 109.281 110   0.469   8.462 9.57 0.884
1997:6 109.281 111   0.188   8.205 9.57 0.857
1997:6 109.281 112   0.062   8.129 9.57 0.849
1997:6 109.281 113   0.016   7.993 9.57 0.835
1997:6 109.281 114   0.016   9.726 9.57 1.016
1997:6 109.281 116   0.016 13.047 9.57 1.363
1997:6 109.281 118   0.016 16.239 9.57 1.697
1997:6 109.281 120   0.016 19.235 9.57 2.010
1997:6 109.281 122   0.016 22.168 9.57 2.316
1997:6 109.281 124   0.016 25.033 9.57 2.616
1997:6 109.281 126   0.016 27.734 9.57 2.898
1997:6 109.281 128   0.016 30.392 9.57 3.176
1997:6 109.281 130   0.016 33.01  9.57 3.449
1997:9 108.844 100   8.922   8.617 9.54 0.903
1997:9 108.844 102   7.062   8.750 9.54 0.917
1997:9 108.844 104   5.375   8.999 9.54 0.943
1997:9 108.844 106   3.875   9.039 9.54 0.947
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EXHIBIT 8.12     (Continued)

Since the options are written on futures prices, the implied volatili-
ties computed directly from the Black model are thus the implied price
volatilities of the underlying futures contract. To convert the implied
price volatilities to implied yield volatilities, we need the duration of the
corresponding cheapest-to-deliver Treasury bond. The conversion is
based on the simple standard relationship between percentage change in
bond price and change in yield:

(13)

which implies that the same relationship also holds for price volatility
and yield volatility. 

Delivery
Month

Futures
Price

Strike
Price

Option
Price

Implied Price
Volatility Duration

Implied Yield
Volatility

1997:9 108.844 108   2.625   9.008 9.54 0.944
1997:9 108.844 110   1.656   8.953 9.54 0.938
1997:9 108.844 112   0.969   8.913 9.54 0.934
1997:9 108.844 114   0.516   8.844 9.54 0.927
1997:9 108.844 116   0.250   8.763 9.54 0.919
1997:9 108.844 118   0.109   8.679 9.54 0.910
1997:9 108.844 120   0.047   8.733 9.54 0.915
1997:9 108.844 122   0.016   8.581 9.54 0.899
1997:9 108.844 124   0.016   9.625 9.54 1.009
1997:9 108.844 126   0.016 10.646 9.54 1.116
1997:9 108.844 128   0.016 11.65  9.54 1.221
1997:12 108.469   98 10.562   7.861 9.51 0.827
1997:12 108.469 106   4.250   9.036 9.51 0.950
1997:12 108.469 108   3.125   9.070 9.51 0.954
1997:12 108.469 110   2.188   9.006 9.51 0.947
1997:12 108.469 112   1.469   8.953 9.51 0.941
1997:12 108.469 114   0.938   8.881 9.51 0.934
1997:12 108.469 116   0.594   8.949 9.51 0.941
1997:12 108.469 118   0.359   8.973 9.51 0.944
1997:12 108.469 120   0.234   9.232 9.51 0.971
1997:12 108.469 122   0.141   9.340 9.51 0.982
1997:12 108.469 128   0.031   9.793 9.51 1.030

P∆
P

------- Duration y∆×–≈
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Looking at the implied yield volatilities of the options with the same
delivery month, one can immediately notice the “volatility smile.” For
example, for the options with a delivery month in June 1997, the implied
yield volatility starts at a value of 0.98% for the deep in-the-money option
with a strike price of 105, steadily drops to a minimum of 0.84% for the
out-of-money option with a strike price of 113, and rises back to a maxi-
mum of 3.45% for the deep out-of-money option with a strike price of
130. Since all the options with the same delivery month are written on the
same underlying bond futures, the only difference is their strike prices. The
question is, which implied volatility is correct? While the answer to this
question largely depends on how we accommodate the volatility smile,19

standard practice suggests that we use the implied volatility of the at-the-
money, or the nearest-the money option. In this case, the implied yield vol-
atility of 0.91% of the option with a strike price of 109 should be used

What is the meaning of an “implied yield volatility of 0.91%”? To
interpret this number, one needs to be aware that this number is
extracted from the observed option price based on the Black model. As a
result, the meaning of this number not only depends on the assumption
that the market correctly prices the option, but also the fact that the mar-
ket prices the option in accordance with the Black model. Neither of
these assumptions need to hold. In fact, most probably, both assumptions
are unrealistic. Given these assumptions, one may interpret that the
option market expects a constant annualized yield volatility of 0.91% for
30-year Treasury from April 30, 1997 to the maturity date of the option.
Caps and floors can also be priced by the Black model, when they are
interpreted as portfolios of options written on forward interest rates.
Accordingly, implied volatilities can be extracted from cap prices and
floor prices, but subjected to the same limitations of the Black model.

Limitations of the Black Model
There are two major assumptions of the Black model that makes it unre-
alistic. First, interest rates are assumed to be constant. Yet, the assump-
tion is used to derive the pricing formula for the option which derives its
payoff precisely from the fact that future interest rates (forward rates)
are stochastic. It has been shown that the Black model implies a time
evolution path for the term structure that leads to arbitrage opportuni-
ties. In other words, the model itself implicitly violates the no-arbitrage
spirit in derivatives pricing.

19 Current research typically uses either a jump diffusion process, a stochastic vola-
tility model, or a combination of both to explain volatility smile. The details are be-
yond the scope of this chapter.
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Second, volatilities of futures prices, or forward interest rates, are
assumed to be constant over the life of the contract. This assumption is
in sharp contrary to empirical evidence as well as intuition. It is well
understood that a forward contract with one month to maturity is more
sensitive to changes in the current term structure than a forward con-
tract with one year to maturity. Thus, the volatility of the forward rate
is inversely related to the time to maturity.

Finally, on the average, implied volatilities from the Black model are
found to be higher than the realized volatilities during the same period
of time.20 A plausible explanation is that the difference in the two vola-
tilities represents the fee for the financial service provided by the option
writers, while the exact dynamics of the relationship between implied
and realized volatilities remains unclear.

Practical Uses of Implied Volatilities from the Black Model
Typically, implied volatilities from exchange-traded options with suffi-
cient liquidity are used to price over-the-counter interest rate derivatives
such as caps, floors, and swaptions. Apart from the limitations as dis-
cussed above, another difficulty in practice is the fact that only options
with some fixed maturities are traded. For example, in Exhibit 8.12, the
constant implied volatilities only apply to the time periods from April
30, 1997 to the delivery dates in June, September, and December 1997,
respectively. For instance, on May 1, 1997, we need a volatility input to
price a 3-month cap on LIBOR. In this case, traders will either use the
implied volatility from options with maturities closest to three months,
or make an adjustment/judgment based on the implied volatilities of
options with maturities just shorter than three months, and options with
maturities just longer than three months.

Recent Development in Implied Volatilities
The finance industry is not unaware of the limitations of the Black
model and its implied volatilities. Due to its simplicity and its early
introduction to the market, it has become the standard in computing
implied volatilities. However, there has been a tremendous amount of
rigorous research going on in interest rate and interest rate derivatives
models, especially since the mid 1980s. While a comprehensive review
of this research is not provided here, it is useful to highlight the broad
classes of models, which can help us understand where implied volatili-
ties related research is going.

20 See Laurie Goodman and Jeffrey Ho, “Are Investors Rewarded for Shorting Vol-
atility?” Journal of Fixed Income (June 1997), pp. 38–42, for a comparison of im-
plied versus realized volatility.
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Broadly speaking, there are two classes of models. The first class is
known as the Equilibrium Model. Some noticeable examples include the
Vasciek model, CIR model, Brennan-Schwartz model, and Longstaff-
Schwartz model, as mentioned earlier in this chapter. This class of models
attempts to specify the equilibrium conditions by assuming that some state
variables drive the evolution of the term structure. By imposing other
structure and restrictions, closed-form solutions for equilibrium prices of
bonds and other interest rate derivatives are then derived. Many of these
models impose a functional form to interest rate volatility, such as the
power function as discussed and estimated earlier, or assume that volatility
follows certain dynamics. In addition, the models also specify a particular
dynamics on how interest rate drifts up or down over time. To implement
these models, one needs to estimate the parameters of the interest rate pro-
cess, including the parameters of the volatility function, based on some
advanced econometric technique applied to historical data. 

There are two major shortcomings of this class of models. First,
these models are not preference-free, which means that we need to spec-
ify the utility function in dictating how investors make choices. Second,
since only historical data are used in calibrating the models, these mod-
els do not rule out arbitrage opportunities in the current term structure.
Due to the nature of the models, volatility is an important input to these
models rather than an output that we can extract from observed prices.
In addition, it has been shown that the term structure of spot yield vola-
tilities can differ across one-factor versions of these models despite the
fact that all produce the same term structure of cap prices.21

The second class of models is known as the No-Arbitrage Model.
The Ho-Lee Model is considered as the first model of this class. Other
examples include the Black-Derman-Toy Model,22 Black-Karasinski
Model,23 and the Heath-Jarrow-Morton Model (HJM).24 In contrast to
the equilibrium models which attempt to model equilibrium, these no-
arbitrage models are less ambitious. They take the current term struc-
ture as given, and assume that no arbitrage opportunities are allowed
during the evolution of the entire term structure. All interest rate sensi-

21 Eduardo Canabarro, “Where Do One-Factor Interest Rate Models Fail?” Journal
of Fixed Income (September 1995), pp. 31–52.
22 Fischer Black, Emanuel Derman, and William Toy, “A One-Factor Model of In-
terest Rates and its Applications to Treasury Bond Options,” Financial Analysts
Journal (January–February 1990), pp. 33–39.
23 Fischer Black and Piotr Karasinski, “Bond and Option Pricing when Short Rates
are Lognormal,” Financial Analysts Journal (1991), pp. 52–59.
24 David Heath, Robert Jarrow, and Andrew Morton, “Bond Pricing and the Term-
Structure of Interest Rates: A New Methodology,” Econometrica (1992), pp. 77–
105.
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tive securities are assumed to be correctly priced at the time of calibrat-
ing the model. In this way, the models, together with the current term
structure and the no-arbitrage assumption, impose some restrictions on
how interest rates of different maturities will evolve over time. Some
restrictions on the volatility structure may be imposed in order to allow
interest rates to mean-revert, or to restrict interest rates to be positive
under all circumstances. However, since these models take the current
bond prices as given, more frequent recalibration of the models is
required once bond prices change.

The HJM model, in particular, has received considerable attention
in the industry as well as in the finance literature. Many other no-arbi-
trage models are shown to be special cases of HJM. In spirit, the HJM
model is similar to the well-celebrated Black-Scholes model in the sense
that the model does not require assumptions about investor prefer-
ences.25 Much like the Black-Scholes model that requires volatility
instead of expected stock return as an input to price a stock option, the
HJM model only requires a description of the volatility structure of for-
ward interest rates, instead of the expected interest rate movements in
pricing interest rate derivatives. It is this feature of the model that, given
current prices of interest rate derivatives, make extraction of implied
volatilities possible.

Amin and Morton26 and Amin and Ng27 use this approach to
extract a term structure of implied volatilities. Several points are note-
worthy. Since the no-arbitrage assumption is incorporated into the
model, the extracted implied volatilities are more meaningful than those
from the Black model. Moreover, interest rates are all stochastic instead
of being assumed constant. On the other hand, these implied volatilities
are those of forward interest rates, instead of spot interest rates. Fur-
thermore, interest rate derivatives with different maturities and suffi-
cient liquidity are required to calibrate the model. Finally, the HJM
model is often criticized as too complicated for practitioners, and is too
slow for real-time practical applications.28

25 This by no means implies that the Black-Scholes model is a no-arbitrage model.
Although no-arbitrage condition is enforced, the Black-Scholes model does require
equilibrium settings and market clearing conditions. Further details are beyond the
scope of this chapter.
26 Kaushik I. Amin and Andrew J. Morton, “Implied Volatility Functions in Arbitrage-
Free Term Structure Models,” Journal of Financial Economics (1994), pp. 141–180.
27 Kaushik I. Amin and Victor K. Ng, “Inferring Future Volatility from the Informa-
tion in Implied Volatility in Eurodollar Options: A New Approach,” Review of Fi-
nancial Studies (1997), pp 333–367.
28 See David Heath, Robert Jarrow, Andrew Morton, and Mark Spindel, “Easier
Done than Said,” Risk (October 1992), pp. 77–80 for a response to this critique.
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SUMMARY

Yield volatility estimates play a critical role in the measurement and con-
trol of interest rate risk. In this chapter we have discussed how historical
yield volatility is calculated and the issues that are associated with its esti-
mate. These issues include the number of observations and the time
period to be used, the number of days that should be used to annualize
the daily standard deviation, the expected value that should be used, and
the weighting of observations. We then looked at modeling and forecast-
ing yield volatility. The two approaches we discussed are historical vola-
tility and implied volatility. For the historical volatility approach, we
discussed various models, their underlying assumptions, and their limita-
tions. These models include the Power Function Models and GARCH
Models. While many market participants talk about implied volatility, we
explained that unlike the derivation of this measure in equity markets,
deriving this volatility estimate from interest rate derivatives is not as sim-
ple and straightforward. The implied volatility estimate depends not only
on the particular option pricing model employed, but also on a model of
the time evolution of the complete term structure and volatilities of yields
of different maturities. 
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Term Structure Factor Models
Robert C. Kuberek

Senior Managing Director
Wilshire Associates Incorporated

uantitative models of risk provide portfolio managers with valuable
tools in the construction and maintenance of investment portfolios

that meet specific performance objectives. Fixed-income portfolio man-
agement is especially amenable to quantitative risk modeling because so
much structure is present in the pricing of fixed-income securities and
because the returns of investment grade fixed-income securities are so
highly correlated with one another. Factor models provide a particularly
powerful technique for modeling fixed-income portfolio risk. Moreover,
because the main sources of risk (and correlation) in the returns of
investment grade fixed-income portfolios relate to the shape and posi-
tion of the yield curve, term structure factor models represent the most
important of these models.

The purpose of this chapter is to review some of the leading approaches
to term structure factor modeling. However, to understand how term
structure factor models work and how they fit into the risk management
landscape, it is useful first to define this important class of risk models
and to put their development in historical perspective. This is the objec-
tive of the next section. Succeeding sections discuss the application of
factor models to risk management, identify the major types of term
structure factor models, describe leading examples of each type of term
structure model, and discuss the advantages and disadvantages of each.

Q
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216 MODELING FACTOR RISK

FACTOR MODELS DEFINED AND HISTORICAL BACKGROUND

Whether risk is measured in terms of standard deviation of return, stan-
dard deviation of tracking error relative to a benchmark, value-at-risk or
probability of underperforming some target, a useful first step in building a
factor model is to develop a quantitative description of returns that relates
returns meaningfully to other quantities and that has statistical moments
that can be estimated easily and reliably. One of the simplest descriptions
of return that meets these requirements is the market model for common
stocks.1 In this model, asset returns are generated by the process

(1)

where

and the tilde (~) denotes a random variable.
If it is further assumed that the residual error terms in equation (1)

are uncorrelated across assets after taking out the influence of the single
index return R

 

m, then this model is an example of a simple “factor”
model where the single factor is the return of the market portfolio. It is
also a linear factor model because it is linear in the factor return R

 

m.
The particular description of the return-generating process in (1) is
closely identified with the Capital Asset Pricing Model (CAPM) of Will-
iam Sharpe2 and John Lintner.3

Another well-known example of a linear factor model for risky assets
underlies the Arbitrage Pricing Theory (the APT) of Stephen Ross.4 This
type of return model, which is very general, assumes that it is not possi-
ble to completely eliminate the correlations of residuals across assets

1 The market model follows from the assumption that stock returns are multi-variate
normal. See Eugene F. Fama, Foundations of Finance (New York: Basic Books,
1976).

R

 

i = the total return of asset i
R

 

m = the total return of the market portfolio
e

 

i = a random error term that is uncorrelated with the market
return

2 William F. Sharpe, “Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk,” Journal of Finance (September 1964), pp. 425–442.
3 John Lintner, “The Valuation of Risk Assets and the Selection of Risk Investments
in Stock Portfolios and Capital Budgets,” Review of Economics and Statistics (Feb-
ruary 1965), pp. 13–37.
4 Stephen A. Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Eco-
nomic Theory (December 1976), pp. 341–360.

Ri
˜ ai biR̃m ei

˜+ +=
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with a single index. In this more general model, returns are generated by
the following process:

(2)

where

In the APT model, excess returns are generated by a linear process
which is the sum of a risk premium a, a set of random factor effects bf,
and a random, asset-specific residual. Examples of factors include index
returns, unexpected changes in GNP, changes in corporate bond yield
spreads, beta, and the ratio of earnings to price. It often simplifies mat-
ters further to assume that the factor returns and the residuals are nor-
mally distributed.

USING FACTOR MODELS TO MEASURE RISK

The moments of a linear factor model are the means, variances and covari-
ances of the factor returns, and the variances of the residuals (one for each
asset).5 The usefulness and power of factor models in risk management lie
in the fact that once the values of the moments are determined together
with the exposures of the risky assets to the factors, it becomes possible to
compute portfolio risk using any one of a number of definitions. 

For example, suppose that the k factors f in equation (2) have k

 

× k
covariance matrix 

 

Ψ. Furthermore, suppose that a particular portfolio
holds n (>k) assets with the n

 

× 1 weight vector x. The portfolio excess
return can be written in matrix form as

(3)

r

 

i = the excess return of asset i over the risk-free rate
f

 

j = the return to risk factor j
e

 

i = a mean-zero random residual error term that is uncorrelated
with the factor returns and uncorrelated across assets

5 Factor models have moments and parameters. Moments are the means, variances,
and covariances of the factor returns. Parameters are used in defining and measuring
the factors. For example, the variance of a factor is a moment, while the weights of
the stocks in the index that represents the factor are parameters. The number of mo-
ments (means, variances, and covariances) in a factor model is a function of the num-
ber of factors. The number of parameters in the model, on the other hand, depends
on the specification of the model.

ri
˜ ai bi1f1

˜ bi2f2
˜ … bikfk

˜ ei
˜+ + + + +=

rp
˜ x′a x′B f̃ x′ẽ+ +=
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218 MODELING FACTOR RISK

where B is an n

 

× k matrix of exposures in which the ith row consists of
the b’s in equation (2).

Equation (3) gives the portfolio return for a portfolio of assets whose
returns are generated by equation (2). The first term in equation (3) is
the average risk premium in the portfolio, which is a weighted average of
the risk premiums of the individual holdings. The second term is the part
of the return that is explained by the k common factors f, and the third
term is the aggregate residual return, the unexpected return or noise in
the portfolio return that is not explained by the risk factors.

The variance, or total risk, of the portfolio return then is

(4)

where D is an n

 

 × n diagonal matrix whose non-zero elements are the
variances of the residuals in equation (2).6 Decomposition of return
variance in this way has important computational benefits. By reducing
the size of the non-diagonal covariance matrix from n

 

 × n to k

 

 × k, for
example, portfolio optimization can be performed using significantly
less cpu time and computer memory.7

Equation (4) decomposes portfolio risk into two components. The first
component represents the contribution to total risk from the exposures to
the common risk factors while the second represents the contribution from
residuals. The contributions to return variance can be separated in this
way because of the assumption in equation (2) that the factor returns are
uncorrelated with the residual returns. Moreover, the residual variance
matrix D has the especially simple diagonal form because of the assump-
tion in equation (2) that the residuals are uncorrelated across assets. An
important feature of this measure of risk is that the second term, the resid-
ual variance, tends to shrink with the number of assets in the portfolio.
Thus, portfolio managers can diversify away the residual risk in their port-
folios but not the systematic, factor risk.

6 The decomposition of return variance in this manner is traceable to William F.
Sharpe, “A Simplified Model for Portfolio Analysis,” Management Science (January
1963), pp. 277–293.
7 In their original paper, which studied single and multiple index portfolios in port-
folio selection, Kalman J. Cohen and Jerry A. Pogue (“An Empirical Evaluation of
Alternative Portfolio Selection Models,” Journal of Business 40 (1967), pp. 166–
193), reported that a single optimization involving only 150 securities required 90
minutes of processing time on an IBM 7090 computer using the full n

 

×n covariance
matrix. While computers presumably have gotten faster in the years since Cohen and
Pogue did their work, the relative advantage of equation (4) in computational time
surely remains.

var rp
˜( ) x′BΨB′x x′Dx+=
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Furthermore, since equation (3) applies to any portfolio, including a
benchmark portfolio, the variance of the tracking error of a portfolio
relative to a benchmark can be written as

(5)

where the weighting vectors x are now subscripted to denote whether
they relate to the portfolio or to the benchmark. The reader will notice
that in equation (5) the variance of the tracking error goes to zero as the
weight differences from the benchmark go to zero—if one holds the
index, the tracking error variance is zero.

TYPES OF FACTOR MODELS

In terms of equation (2), factor models can be categorized according to
how the factor exposures and factor returns are measured. In this
regard, it is customary to classify factor models as macroeconomic, sta-
tistical, or fundamental.

Macroeconomic Factor Models
In macroeconomic factor models, the factor returns in equation (2) rep-
resent unexpected changes in quantities that are observable. Quantities
that are commonly employed as macroeconomic factors include the
returns of specified indexes of common stocks, such as capital goods or
materials and services indexes, as well as unexpected changes in mea-
sures of aggregate economic activity, such as industrial production, per-
sonal income, or employment. Since the factor returns are directly
observable, the moments of the factor model (the means, variances, and
covariances of the factor returns) can be estimated directly from the time
series of factor returns. Assets are differentiated by their exposures to
these variables, which are the b’s in equation (2). These exposures can be
estimated by regressing time series of individual stock returns (or of
portfolios of similar stocks) on the observed factor returns, using equa-
tion (2), with the stock returns as the dependent variable and the
observed factor returns f as the independent variables. Examples of mac-
roeconomic factor models include the single and multiple index models
of Cohen and Pogue8 and the APT model of Chen, Roll, and Ross.9

8 Cohen and Pogue, “An Empirical Evaluation of Alternative Portfolio Selection
Models.”
9 Nai-Fu Chen, Richard Roll, and Stephen A. Ross, “Economic Forces and the Stock
Market,” Journal of Business (1986), pp. 383–404.

var rp
˜ rb

˜–( ) xp xb–[ ]′BΨB′ xp xb–[ ] xp xb–[ ]′D xp xb–[ ]+=
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220 MODELING FACTOR RISK

Macroeconomic factor models have the great advantage that because
the factors are observable, they are easy to relate to the performance of
individual stocks in an intuitive way. One can imagine (whether it is true
or not), for example, that airline stocks would tend to do well in an eco-
nomic upturn, while drug stocks might be relatively insensitive to general
economic conditions. A disadvantage of this approach is that with only a
small number of factors it may be difficult to eliminate correlation of
residuals across assets. A second disadvantage of this type of factor
model is that it may be difficult to measure either the exposures of the
assets to the macroeconomic variables or the returns to these variables
using data of arbitrary frequency. For example, one could identify a fac-
tor with the Federal Reserve’s Industrial Production index, but this sta-
tistic is published only monthly, making it impossible to estimate and use
the model in this form with daily returns data.

Statistical Factor Models
The second traditional type of factor model is the statistical model. In
this type of model a statistical procedure, such as factor analysis or
principal components analysis, is used both to identify the factors and
to measure the factor returns. In principal components analysis, for
example, a factor model is constructed using a multivariate time series
of individual stock returns. The covariance (or correlation) matrix of
stock returns is factored by identifying some small number of linear
combinations (the principal components) of stock returns that account
for most of the return variance in the sample. Thus the factor returns
end up being linear combinations of individual stock returns and the
factor exposures are the multiple regression coefficients of individual
stock returns with these principal components.10

An advantage of this method relative to pure macroeconomic factor
models is that one can remove as much of the correlation in residuals as
one likes by including as many principal components as desired, all the
way up to the number of stocks (or stock portfolios) in the original sam-
ple. A second advantage relative to macroeconomic factor models is that
returns are the only inputs and thus frequency is not an issue: The
model can be estimated with any frequency for which the individual
stock returns are available.

A disadvantage of the statistical approach is that the factors are not
observable in the sense that one cannot make measurements of the fac-
tor returns independently of the stock returns themselves and in the

10 For an early application of this approach, see Benjamin King, “Market and Indus-
try Factors in Stock Price Behavior,” Journal of Business 39 (1966), pp. 139–190.
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sense that the factors do not always correspond to quantities that can be
related easily to stock returns.

A disadvantage of both the pure macroeconomic factor models
(when the factor returns are observed and the exposures are estimated)
and the statistical approaches is that the exposure of a given stock to a
factor can, and probably does, change over time as the company’s busi-
ness mix and capital structure change. Because of their reliance on time
series estimates of factor exposure, neither of these approaches handles
this problem gracefully. A related disadvantage of both pure macroeco-
nomic factor models and statistical factor models is that new securities
are difficult to fit in a portfolio because there is no history with which to
estimate the exposures.

Fundamental Factor Models
The fundamental approach combines some of the advantages of macro-
economic factor models and statistical factor models while avoiding cer-
tain of their difficulties.11 The fundamental approach identifies the
factors with a stock’s exposures to a set of attributes, which can include
the stock’s beta, its ratio of earnings-to-price (e/p), its economic sector
(e.g., capital goods), and its industry classification (e.g., automotive). In
this type of factor model, the factor exposures are the exposures to the
economic variables, the actual (or normalized) values of the fundamen-
tals (e.g., the actual e/p ratio), and, in the case of a classification factor,
simply a dummy variable that has a value of one if the stock falls into
the category or zero otherwise. Factor returns are not observed directly
but are inferred by regressing cross-sections of stock returns against
their exposures to the set of factors.12

An important advantage of the fundamental approach relative to
the macroeconomic and statistical approaches is that as the exposure of
a stock to a given factor changes over time, these exposure changes can
be tracked immediately so that measures of portfolio risk correctly
reflect the current condition of the portfolio’s underlying assets. By the
same token it is easy to include new securities in a portfolio because no
history is required to estimate their factor exposures.

11 Examples of this approach include, Eugene F. Fama and James MacBeth, “Risk,
Return and Equilibrium: Empirical Tests,” Journal of Political Economy (1973), pp.
607–636, and Eugene F. Fama and Kenneth R. French, “The Cross-Section of Ex-
pected Stock Returns,” Journal of Finance (June 1992), pp. 427– 465.
12 In this case the beta, if it is included as a factor, is estimated or modeled using a
prior time series.
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TYPES OF TERM STRUCTURE FACTOR MODELS

The general framework of equation (2) can be applied to fixed-income
securities easily. However, for investment grade fixed-income securities,
the main sources of risk relate to the level and shape of the yield curve.
Thus, the appropriate factor models are term structure factor models,
where the factors in equation (2) are defined specifically to explain the
returns of default-free bonds, such as Treasuries or stripped Treasuries,
and thus describe changes in yield curve level and shape.13

An important feature of term structure factor models is that, because
the factors mainly explain the risk of yield changes, in each model there is a
characteristic yield curve shift associated with each factor. Still, as will be
seen, each of the models described here bears a resemblance to one or
another of the common stock models already described. Along these lines,
term structure factor models can be classified in three types, as follows:

1. Arbitrage models
2. Principal components models
3. Spot rate models and functional models

Term structure factor models that use equilibrium or arbitrage
methods, especially Cox, Ingersoll, and Ross14 and Richard15 are analo-
gous to macroeconomic factor models for common stocks. These mod-
els work by postulating dynamics for a set of observable state variables
that are assumed to underlie interest rates and deriving (in the case of
equilibrium models) or assuming (in the case of arbitrage models) some
equilibrium condition for expected returns, then deriving the term struc-
ture. Examples of state variables underlying these models include the
short-term nominal interest rate, the short-term “real” rate of interest,
the rate of inflation, and the unexpected component of the change in the
Consumer Price Index. A unique feature of the equilibrium/arbitrage
approach, relative to other types of term structure factor models, is that
the equilibrium/arbitrage approach produces term structure factor mod-
els that are rigorously consistent with security valuation. In other
words, these models provide both bond prices and dynamics.

13 For non-Treasury securities additional factors can be important in determining
portfolio risk. See, for example, Robert C. Kuberek, “Common Factors in Bond
Portfolio Returns,” Wilshire Associates Incorporated (1989).
14 John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross, “A Theory of the Term
Structure of Interest Rates,” Working Paper (August 1978) and John C. Cox,
Jonathan E. Ingersoll, and Stephen A. Ross, “A Theory of the Term Structure of In-
terest Rates,” Econometrica (1985), pp. 385–407.
15 Scott F. Richard, “An Arbitrage Model of the Term Structure of Interest Rates,”
Journal of Financial Economics (1978), pp.33–57.
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Term structure factor models based on principal components or fac-
tor analysis, such as Gultekin and Rogalski16 and Litterman and Schei-
nkman,17 are analogous to the statistical factor models for common
stocks described previously. In this type of model, factor analysis or
principal components analysis is used to identify the factors underlying
the returns of bonds of different maturities or, almost equivalently, to
identify the factors underlying the movements of yields at different
maturities. As with the common stock return models, the factor returns
typically are linear combinations of the returns of zero-coupon bonds
and the factor exposures are the multiple regression coefficients of indi-
vidual bond returns with these principal components.

Two other approaches, spot rate models and functional models, bear
some resemblance to fundamental models for common stocks in that the
factors are most naturally identified with different measures of exposure.
Spot rate models identify the term structure factors directly with the dura-
tions of zero-coupon bonds at specified points along the term structure.
An important example of this type of model is the RiskMetrics™ model,18

which identifies factors with the durations of zero-coupon bonds at ten
points along the yield curve, 3-months, 1-year, 2-years, 3-years, 5-years,
7-years, 10-years, 15-years, 20-years, and 30-years. Duration for coupon
bonds can be calculated either directly from the cash flows, if the cash
flows are well defined, using so-called cash-flow mapping techniques, or
with the aid of a yield-curve-based valuation model (e.g., an option-
adjusted-spread, or OAS, model), in the case of bonds with embedded
options and payment contingencies.19 The RiskMetrics™ model and
approach are in wide use in a variety of risk management applications,
but especially in applications focusing on value-at-risk.

16 N. Bulent Gultekin and Richard J. Rogalski, “Government Bond Returns, Mea-
surement of Interest Rate Risk and the Arbitrage Pricing Theory,” Journal of Finance
(1985), pp. 43–61.
17 Robert Litterman and José Scheinkman, “Common Factors Affecting Bond Re-
turns,” Journal of Fixed Income (June 1991), pp. 54–61.
18 For a comprehensive description of this approach, see “RiskMetrics—Technical
Document,” J.P. Morgan/Reuters, 1996.
19 See, for example, Robert C. Kuberek and Prescott C. Cogswell, “On the Pricing of
Interest Rate Contingent Claims in a Binomial Lattice,” Wilshire Associates Incor-
porated (May 1990). These term structure-based OAS models are prerequisite for
measuring exposures to term structure factors for any but the simplest fixed-income
securities. The general approach is to fit the model to the quoted price of a bond by
iterating on a spread over the initial term structure, then numerically to compute the
factor exposure by shifting the starting term structure and recalculating the model
value of the bond at the same spread. 
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Functional models, for example Kuberek20 and Wilner,21 seek to
represent yield curve risk using approximating functions that are based
on, or related, to polynomials. These models fit smooth curves to actual
yield curve movements, where the fitted shifts represent a composite of a
basic set of yield curve shift components, reflecting, for example, change
in yield curve level, change in slope, and change in curvature. Factors
are identified with the durations of zero-coupon Treasuries with respect
to these prespecified shift components. Superficially, the basic yield
curve shift components resemble principal components shifts, but are
generated not by a historical data sample but by some underlying math-
ematical reasoning.

In fact, as will be seen, all of the term structure factor models
described here can be represented as a form of equation (2). Moreover,
all of the term structure factor models described here share the property
that the factor returns in the model represent the amounts and direction
of each characteristic yield curve shift allowed in the model, and the
exposures, the b’s in equation (2), are the durations of the bonds with
respect to these yield curve shifts. From this perspective, a useful way to
distinguish the models is in the number of characteristic yield curve
movements that each model implies and in the forms of these character-
istic yield curve movements. 

The remainder of this chapter will explore a leading example of
each of the term structure factor models described above. The examples
that will be used are (1) for arbitrage models, the one-factor equilibrium
term structure model of Cox, Ingersoll, and Ross; (2) for principal com-
ponents models, Litterman and Scheinkman; (3) for spot rate models,
the RiskMetrics™ model; and, (4) for functional models, Kuberek. To
facilitate the comparison of the different models, each of the models is
recast to describe yield curve risk at the same 12 points along the yield
curve—9 months, 1 year, 1.5 years, 2 years, 3 years, 4 years, 5 years, 7
years, 10 years, 15 years, 20 years, and 30 years.

ARBITRAGE MODELS

The Cox, Ingersoll, and Ross equilibrium term structure model (CIR) is
developed fully within the context of a single-good production economy

20 Robert C. Kuberek, “An Approximate Factor Model for U.S. Treasuries,” Pro-
ceedings of the Seminar on the Analysis of Security Prices (November 1990), The
University of Chicago Center for Research in Securities Prices, pp. 71–106.
21 Ram Willner, “A New Tool for Portfolio Managers: Level, Slope and Curvature
Durations,” Journal of Fixed Income (June 1996), pp. 48–59.
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with stochastic production possibilities and uncertain technological
change.22 However, the model can be developed using arbitrage arguments,
providing that the specification of the equilibrium condition for expected
bond returns is consistent with their general equilibrium formulation.23

Assume that there is one factor, which is represented by the short-
term interest rate r. Further, assume that this rate evolves according to
the process

(6)

where

Equation (6) says that the change in the short-term interest rate r
over the period dt is the sum of two components, a drift component,
which represents the expected reversion of the short-term rate toward
the mean, and a surprise term that reflects unexpected changes in inter-
est rates. This description of interest rate dynamics has several impor-
tant properties. These include mean reversion, volatility of interest rates
that increases with the level of interest rates, and the fact that the future

22 The CIR model is constructed for an economy where money does not play a role
and therefore the short-term interest rate in the model is a “real” rate. Nevertheless,
by convention the one-factor CIR model is applied to the nominal term structure,
where the short-term rate in the model is regarded as a nominal rate.
23 In distinguishing the arbitrage approach from their own equilibrium approach,
Cox, Ingersoll, and Ross write, “An alternative to the equilibrium approach taken
here is based purely on arbitrage considerations. Here is a brief summary of this ar-
gument. Assume that all uncertainty is described by some set of state variables. If
there are no pure arbitrage opportunities in the economy, then there exists a (not nec-
essarily unique) set of state-space prices which support current contingent claim val-
ues... By assuming that the state variables follow an exogenously specified diffusion
process, one obtains a valuation equation of the same general form as [CIR (1978)
eq.] (25). However, the resulting equation contains undetermined coefficients which
depend on both preferences and production opportunities and can be identified only
in a general equilibrium setting” (italics supplied). Notwithstanding this criticism,
however, as Richard and others have shown, arbitrage models are powerful, easy to
develop, and, provided one is willing and has the means to solve them numerically,
reasonably practical. 

µ = long-term average value of the short-term interest rate r
κ = rate of reversion of the short-term interest rate r toward its

long-term average value 
σr¹⁄₂ = standard deviation of unexpected changes in the short-

term interest rate 
dz = a standard Brownian motion

dr κ µ r–( )dt σ rdz+=
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behavior of the interest rate depends only on its current value and not
on the history of its movements.

If the price P(r,T) of a zero-coupon bond paying $1 in T years
depends only on the short-term interest rate r and the maturity T, it fol-
lows from Ito’s lemma24 that the return over a period dt of a zero-coupon
bond with maturity T is

(7)

The first term on the right-hand side of equation (7) is the expected
excess return of the T-year maturity zero-coupon bond. It consists of
four components. The first is that part of the return due to the expected
movement of the short-term rate r toward its long-term average value µ.
The second component is due to accretion toward par. The third compo-
nent is a volatility premium that is proportional to convexity. The
fourth component is the current value of the short-term rate, subtracted
to obtain the expected excess return.

The second term on the right-hand side of equation (7) is the effect of
the unexpected component of the change in the short-term interest rate.

If it is assumed that the expected excess return of the T-year zero-
coupon bond in equilibrium is proportional to the bond’s “duration”
with respect to the short-term interest rate by a risk premium λr, that
represents the price of interest rate risk per unit of duration, then equa-
tion (7) becomes

(8)

Equation (8) says that the excess return on a zero-coupon bond of
maturity T is the sum of two components, a risk premium that is pro-
portional to the product of the bond’s duration with respect to r and the
risk premium λr, and a surprise that is the product of the bond’s dura-
tion and the unexpected change in the interest rate r.

Inspection of equation (8) shows that it has exactly the form of
equation (2) where

(9a)

24 For a discussion of the application of Ito’s lemma to the pricing of bonds, see S.
Fischer, “The Demand for Index Bonds,” Journal of Political Economy (1975), pp.
509–534.

rT
˜ Pr P⁄( )k µ r–( ) Pt P⁄

1

2
--- Prr P⁄( )σ2r r–+ +

 
 
 

dt Pr P⁄( )σ rdz+=

rT
˜ Pr P⁄( )λrdt Pr P⁄( )σ rdz+=

a Pr P⁄( )λrdt=
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EXHIBIT 9.1  Characteristic Yield Shifts: CIR Model

and

                                                                                          (9b)

Under these conditions CIR provide a closed-form expression for the
duration Pr/P of a zero-coupon bond maturity T. This is given by the fol-
lowing formula:

(10)

where

The CIR model produces a single characteristic yield shift as illus-
trated in Exhibit 9.1. The shift, which resembles a twist at the short end
of the curve, describes yield curve behavior when yield changes are per-
fectly correlated and when short-term yields tend to move more than
long-term yields. This tendency for short-term interest rates to be more
volatile than long rates is a result of the mean reversion in the short rate
assumed for the model and described in equation (6). For example, sup-

b Pr P⁄( )=

Pr r T,( )

P
--------------------

2 eγT 1–( )

γ k λ+ +( ) eγT 1–( ) 2γ+
--------------------------------------------------------------–=

γ κ λ+( )2 2σ2+=
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pose that the values of the parameters in equation (10) for this example
are as follows: κ = 0.1, λ = −0.04 (a negative value corresponds to a pos-
itive term premium), and σ = 0.03578. These parameter values are con-
sistent with a 10-year mean reversion time, a term premium of 20 basis
points per year of duration, and an annual standard deviation of short-
term interest rate changes of 80 basis points. Given these values for the
parameters, if the short rate increases by 100 basis points, the 30-year
zero-coupon rate will increase by just over 20 basis points. 

As can be seen in Exhibit 9.2, for this combination of parameter values
the CIR durations of zero-coupon bonds do not increase as rapidly as their
ordinary durations, which are just the times-to-maturity of the bonds. This
is a reflection of the tendency for long rates to rise by less than short rates,
when short rates rise, and for long rates to fall by less than short rates,
when short rates fall. Thus, CIR durations suggest that ordinary durations
overstate the risk of long maturity bonds relative to short maturity bonds.

The CIR model has several advantages over other approaches. First,
it is rigorously consistent with the valuation of fixed-income securities.
In other words, the model produces both prices and returns. A second
advantage is that the model is defined continuously in maturity: Expo-
sures can be calculated for zero-coupon bonds of any maturity without
recourse to approximation or interpolation. A third advantage, which
has already been mentioned, is that the moments—the mean and vari-
ance of the (single) factor return—can be estimated directly by observing
the time series of factor returns, in this case the time series of changes in
the short-term interest rate. 

EXHIBIT 9.2  Bond Durations: CIR Model

Time to Maturity b1

  0.75 −0.71
  1.00 −0.93
  1.50 −1.35
  2.00 −1.74
  3.00 −2.45
  4.00 −3.05
  5.00 −3.58
  7.00 −4.43
10.00 −5.32
15.00 −6.16
20.00 −6.56
30.00 −6.84
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A disadvantage of this model is that it allows only one type of yield
curve shift and is thus very limited in the variety of actual yield curve
behaviors that it can describe. This is not a shortcoming of the general
approach, however. CIR also present a two-factor model, with uncer-
tain short-term interest rates and uncertain inflation, within the context
of their general equilibrium model, and Richard and others have pro-
posed other two-factor and multi-factor models based on arbitrage
arguments. However, for the variety of interest rate dynamics that have
known solutions like equation (10), the models tend to have a large
number of parameters and very complicated forms.

A second minor disadvantage of the one-factor CIR model as a factor
model is evident from inspection of equation (8), namely, that the coeffi-
cients in the factor model depend on the level of interest rates. This depen-
dence of the coefficients on the level of interest rates is plausible on the
grounds that it is consistent with the presumption that interest rates tend to
be more volatile when interest rate levels are higher. However, it means that
this model cannot be implemented by regressing cross sections of bond
returns on their durations, then averaging over time to obtain the moments,
without first normalizing the exposures for the level of interest rates.

PRINCIPAL COMPONENTS MODELS

A second major category of term structure factor models is based on
principal components analysis. In this approach, the returns of zero-
coupon bonds of different maturities are factor analyzed to extract a
(hopefully small) set of characteristic yield curve shifts, defined at dis-
creet maturities, that together explain a large proportion of the total
variance of returns in the sample. The factors are thus the amounts and
direction of each type of characteristic yield curve shift that combine to
explain the returns of a cross section of bond returns for a given perfor-
mance period. Gultekin and Rogalski use this technique on coupon
Treasuries, while Litterman and Scheinkman use the method to factor
analyze the returns of Treasury implied zero-coupon bonds.25 Because

25 Implied zero-coupon bonds, or implied zeros, are hypothetical bonds that are
priced using discount factors that are consistent with the discount factors that the
market uses to price actual coupon Treasuries. While these bond prices cannot be ob-
served directly, their existence is somewhat validated by the possibility of creating
them synthetically by constructing a hedge portfolio of coupon Treasuries. Also, a
closely related security, the Treasury strip, does actually exist. The reason for using
implied zeros in preference to actual Treasury strips to build a factor model is the
availability of more history for backtesting: Treasury strips did not exist before the
early 1980s, whereas Treasury prices are widely available back to 1974 and implied
zero curves are available back even further.
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the use of implied zeros is more consistent with generalizations of equa-
tion (2) for any bond, the focus here will be on the approach of Litter-
man and Scheinkman (LS).

To illustrate the LS model, suppose that returns are available for
implied zeros at twelve maturities, as follows: 9 months, 1 year, 1.5
years, 2 years, 3 years, 4 years, 5 years, 7 years, 10 years, 15 years, 20
years, and 30 years. With principal components one can specify any
number of factors up to the number of securities in the data sample—in
this case 12. Typically, a number is chosen such that most of the vari-
ance in the sample is explained by the factors selected. For the example
here, the first three principal components typically explain more than
98% of the variance in the data sample, so three is chosen as the num-
ber of factors. The characteristic yield curve shifts that correspond to
the first three yield curve factors are shown in Exhibit 9.3.

The first yield curve factor is the relatively flat curve near the top of
Exhibit 9.3. This corresponds to a yield shift that is roughly, but not
exactly, uniform. The second shift is a pivoting shift for which short
rates fall and long rates rise. This shift is almost uniform for maturities
greater than 15 years. The third shift is a change in curvature, with short
rates rising, intermediate rates falling, and long rates rising. Actual yield
curve shifts are represented as composites of these three characteristic
yield shifts. The principal components procedure works in such a way
that the factors are uncorrelated in the data sample that was used to
generate them. This “uncorrelatedness” of the factors is a consequence
of the property of principal components referred to as orthogonality.

EXHIBIT 9.3  Characteristic Yield Curve Shifts: Principal Components Model
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The exposures or “durations” of the implied zeros with respect to
each of these factors, the b’s in equation (2), are shown in Exhibit 9.4. As
with the analogous common stock models, factor returns are produced
by the principal components procedure itself but, alternatively, can be
estimated by regressing the returns of cross sections of zero-coupon
bonds on the durations implied by the characteristic yield shifts that are
produced by the principal components analysis (Exhibit 9.4). The dura-
tions are scaled to the characteristic yield shifts themselves, so that, for
example, one unit of return for the second factor corresponds to a yield
shift of 0.38% at 30 years. Thus, to obtain the return of the 5-year zero-
coupon bond resulting from one half unit of return for the second factor,
assuming the factor returns for the other factors are zero for a given
period, it is only necessary to multiply the duration (−0.20) by the factor
return (0.50) to get −0.10%. In practice, the realized factor returns will
all be non-zero, but then the effects are computed in the same way for
each factor and the results added together to get the total excess return
predicted for that security, as in equation (2).26

EXHIBIT 9.4  Bond Durations: Principal Components Model

Time to Maturity b1 b2 b3

  0.75   −0.60     0.40 −0.21
  1.00   −0.88     0.44 −0.14
  1.50   −1.41     0.46   0.08
  2.00   −1.93     0.46   0.20
  3.00   −2.93     0.29   0.53
  4.00   −3.93     0.10   0.67
  5.00   −4.92   −0.20   0.75
  7.00   −6.83   −1.13   0.77
10.00   −9.56   −2.60   0.24
15.00 −13.84   −5.33 −1.17
20.00 −18.10   −7.35 −2.81
30.00 −25.89 −11.58 −7.51

26 The scaling of principal components models is pretty arbitrary. Thus, for example,
the model here could have been scaled so that the characteristic yield shift of the sec-
ond factor was 1.00% at 30 years instead of 0.38% (see Exhibit 9.2). In this case the
duration of the 30-year bond with respect to the second factor would have had to
have been scaled up accordingly. The content and explanatory power of the complete
factor model would remain the same, however. In particular, the returns predicted
for a bond, given its exposures and given the realized factor returns estimated for the
performance period, would be identical.
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An advantage of the principal components approach in term structure
factor modeling is that the actual data provide guidance in defining the
factors. A disadvantage of the principal components model, which is
inherent in the approach, is the large number of parameters required. In
the example here with three principal components, 36 parameters are
required. These are the parameters required to describe the characteristic
yield curve shift for each of the three factors at each of 12 maturities. A
second disadvantage is that the exact definition of the factors, and there-
fore of the exposures, depends on the data sample used to extract the
principal components. As experience is accumulated, the data change and
the definition of the factors, and thus the durations of bonds, change. 

A third disadvantage of this approach is that the model is not
defined continuously on maturity. Thus, to calculate factor exposures
for bonds with maturity or cash flow dates different from the maturities
of the zeros used to define the factors, some interpolation of the charac-
teristic yield curve shifts must be performed. The larger the number of
maturities used to define the factors, the less interpolation is needed, but
the more parameters are required. Of course, there is no guarantee that
once the factors are defined, using a particular historical data sample,
the factor returns still will be uncorrelated out of sample. 

SPOT RATE MODELS

Spot rate models identify factors with the durations of zero-coupon
bonds at each of a number of points along the yield curve. The factors
thus can be interpreted as changes in the yields of these hypothetical
zero-coupon bonds. Moreover, any number of yield curve points can be
used to define the model, so the portfolio manager has wide latitude in
defining the model to suit the specific application. Spot rate models have
the least content in terms of economic assumptions and, correspond-
ingly, the fewest parameters.

One of the leading examples of spot rate models is J. P. Morgan’s
RiskMetrics™ model.27 This model defines ten points along the yield
curve and provides the variance-covariance matrix, the Ψ in equation
(4), of spot rate changes for 13 countries including the United States.
The RiskMetrics™ model is widely applied in measuring value-at-risk.
The portfolio’s “value-at-risk” is the largest dollar loss (or loss in terms

27 For a discussion this approach as compared with the principal components ap-
proach, see Bennett W. Golub and Leo M. Tilman, “Measuring Yield Curve Risk Us-
ing Principal Components Analysis, Value at Risk and Key Rate Durations,” Journal
of Portfolio Management (Summer 1997), pp. 72–84.
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of some other reference currency) that a portfolio will suffer “ordi-
narily.” For example, if a portfolio will lose not more than $100, 95%
of the time, then the value-at-risk is said to be $100. Value-at-risk can
be computed from equation (4), as follows:

Value-at-Risk = 1.65 (Portfolio Value) [var(rp)]¹⁄₂

As with all the term structure factor models described here, however,
spot rate models can be estimated in at least two ways. The time series of
factor returns can be estimated by measuring the yield changes at each
yield curve point in the model, as with a macroeconomic factor model
for common stocks. Alternatively, one may calculate the durations of the
bonds with respect to the spot rate changes and regress bond returns
cross-sectionally on these durations to create a time-series of factor
returns. Typically, the second method is more direct because, by using
this method, the yield curve itself does not need to be estimated.

Exhibit 9.5 shows the characteristic yield curve shifts for the first four
spot rate factors in the 12-factor formulation. As the exhibit makes clear, the
characteristic yield curve movements of spot rate models have a very
extreme appearance. A yield change is either zero, off a given yield curve
point, or 100 basis points, on the yield curve point. Yield changes are inter-
polated between adjacent points. In other words, if one of the bond’s cash
flows falls between the stipulated yield curve points, that cash flow has some
duration with respect to both the adjacent points. Spot rate factors can be
scaled, as in the example here, so that the duration of a zero-coupon bond to
a given spot rate change is just equal to that bond’s time to maturity.

EXHIBIT 9.5  Characteristic Yield Shifts: Spot Rate Model
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Exhibit 9.6 shows durations for the first four factors in the 12-factor
spot rate model. A feature of spot rate models is that because of the way
the models are defined, the spot rate durations of a bond, if scaled this
way, add up approximately to the ordinary duration of the bond. 

A major advantage of spot rate models over principal components
models is that fewer parameters are required. Where principal compo-
nents models imply that spot rate changes at various maturities can
combine only in the ways implied by the principal components, in spot
rate models spot rate changes can combine in any way that is possible
using the number of spot rates in the model. Like arbitrage models and
unlike principal components models, the factors in spot rate models are
not required to be orthogonal.

A disadvantage of the spot rate approach is the fact that the charac-
teristic yield curve shifts in the spot rate model, as illustrated in Exhibit
9.3, do not correspond with yield curve movements that actually take
place. Nor are the characteristic yield curve shifts defined continuously
on maturity. Thus, as with principal components models, some interpo-
lation of yield changes is required to apply the model to bonds with
cash flows (or yield curve exposures) at times other than the points
defined in the model.

A third disadvantage of spot rate models is the fact that a large
number of factors are required to model yield curve risk accurately. To
use an example, suppose that one wanted to reproduce with spot rate
changes the characteristic yield curve movements of a principal compo-

EXHIBIT 9.6  Bond Durations: Spot Rate Model

Time to Maturity b1 b2 b3 b4

  0.75 −0.75  0.00 0.00 0.00
  1.00 0.00 −1.00  0.00 0.00
  1.50 0.00 0.00 −1.50  0.00
  2.00 0.00 0.00 0.00 −2.00
  3.00 0.00 0.00 0.00 0.00
  4.00 0.00 0.00 0.00 0.00
  5.00 0.00 0.00 0.00 0.00
  7.00 0.00 0.00 0.00 0.00
10.00 0.00 0.00 0.00 0.00
15.00 0.00 0.00 0.00 0.00
20.00 0.00 0.00 0.00 0.00
30.00 0.00 0.00 0.00 0.00
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nents model as described in Exhibit 9.3. To accomplish this, it would be
necessary to combine 12 spot rate shifts in the appropriate proportions
to recover the information in just one principal components shift. As a
consequence, portfolio managers need to use a large number of dura-
tions to manage interest rate risk effectively using this approach.

FUNCTIONAL MODELS

Functional models combine the advantages of arbitrage models, conti-
nuity and consistency with equilibrium pricing, with the parsimony of
principal components models. Functional models assume that zero-coupon
yield changes are defined continuously in maturity, for example with a
shift function f(T):

(11)

where ∆y(T) is the change in the zero-coupon yield at maturity T. Then,
a Taylor series or some other approximating function can be applied to
the function f(T), retaining the number of terms that are sufficient to
describe actual yield curve movements adequately. Durations are com-
puted from the approximating function directly. For example, the yield
shift function f(T) can be approximated by a Taylor series, as follows:

(12)

The factors are identified with the resulting durations, which can be
derived easily from equation (12).

Chambers, Carleton, and McEnally employ this idea to devolop risk
measures for use in immunization and hedging, but do not explore the
implications of this approach for developing term structure factor mod-
els.28 Similarly, Nelson and Siegel use exponentials to fit yield levels at
the short end of the yield curve, but do not extend their approach to the
long end of the curve, except to test extrapolations of the model as fitted
to Treasury bills, nor to the identification of a factor model.29

28 D. R. Chambers, W. T. Carleton, and R. W. McEnally, “Immunizing Default free
Bond Portfolios with a Duration Vector,” Journal of Financial and Quantitative
Analysis (1988), pp. 89–104. See also, D. R. Chambers and W. T. Carleton, “A
More General Duration Approach,” Unpublished Manuscript (1981).
29 Charles R. Nelson and Andrew F. Siegel, “A Parsimonious Modeling of Yield
Curves,” Journal of Business (October 1987), pp. 473–489.

f T( ) y∆ T( )=

f T( ) c0 c1T c2T2 …+ + +=
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Kuberek uses the functions that are proposed by Nelson and Siegel,
to model the short-end of the forward rate curve, for the purpose of
approximating the shift function given by equation (11) for zero-coupon
yields. This three-factor model has the following form:

(13)

where q is a parameter.30 The model given by equation (13) resembles
equation (12) except that the second and third terms contain an expo-
nential decay. This exponential form has the benefit that, in contrast to
equation (12), changes in yield curve level and shape will not become
unbounded in maturity.

With this formulation, the zero-coupon bond durations, the b’s in
equation (2), take the very simple form

(14)

where

and where the bij are the exposures of the ith zero-coupon bond to the
jth factor.

Thus, the first factor in this three-factor model represents the effect
of a precisely uniform change in the level of interest rates, the second
factor represents the effect of a change in slope of the yield curve, and
the third factor represents the effect of a change in curvature of the yield
curve. Factor returns can be estimated by regressing cross sections of
zero-coupon bond returns on these durations.

Exhibit 9.7 shows these characteristic yield curve movements for the
three-factor functional model in equation (13). In this exponential form,
the characteristic yield shifts represent changes in level (factor 1), slope
(factor 2), and curvature (factor 3). The model is specified so that
changes in slope affect short rates more than long rates. This is consis-
tent with the behavior of the yield curve at certain times, where short

30 The value of the single parameters q, which represents the location of the maxi-
mum in the third shift component and simultaneously determines the rate of decay
in the second, can be chosen in any convenient way. Kuberek (“An Approximate
Factor Model for U.S. Treasuries”) uses the value of q that maximizes the ability of
the three-factor model to describe a wide variety of yield curve shifts under diffuse
priors.

w1 = −1
w2 = −e−T/q

w3 = −T/qe1−T/q

f T( ) c0 c1e T q⁄– c2 T q⁄( )e1 T q⁄–+ +≈

bij wj Ti( )Ti=
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rates are more volatile than long rates. To reproduce yield curve move-
ments where long rates change by more than short rates, factors 1 and 2
can be combined. For example, an upward shift of one unit of factor 2
(100 basis points at the short end) combined with a downward shift of
one unit of factor 1 (100 basis points uniformly) produces a flattening of
100 basis points at the long end, with short rates unchanged. Additional
complexity in yield curve movements, including various combinations of
change in slope and curvature, can be achieved by including factor 3.

The zero-coupon bond durations are given in Exhibit 9.8. As can be
seen, the durations at various maturities with respect to the first factor are
equivalent to the ordinary (effective) duration of the bonds. The durations
with respect to the second factor, which represents a change in slope,
increase in magnitude with maturity to seven years, then decrease. The
third factor’s durations increase in magnitude to 14 years, then decrease.

The model described here, which is based on approximating func-
tions, has several significant advantages. Most usefully, ordinary (effec-
tive) duration, as conventionally defined, is the first factor. Second,
unlike the principal components models and spot rate models, the
model is inherently consistent with rigorous equilibrium or arbitrage
term structure models that imply yield changes that are continuous in
maturity, including the CIR model already described. Third, it has only
one parameter (and it has no more moments than any other three-factor
model). Finally, the yield shifts implied by this model correspond with
yield curve movements that portfolio managers can easily imagine
occurring, namely, changes in level, slope, and curvature. 

EXHIBIT 9.7  Characteristic Yield Curve Shifts: Functional Model
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Because of the particularly simple form of equation (14), the dura-
tions of coupon bonds also have a very simple form, as follows:

(15)

where sh is the present value of the hth cash flow and where the w’s are as
given in equation (14). Equation (15) is simply the formula for ordinary
duration, with an added weighting term w(T). For the first factor, w has a
value of unity for all maturities T equation (14), so the associated dura-
tion is simply the ordinary (effective) duration. More generally, bond
durations in this model are calculated in the same way as ordinary (effec-
tive) duration, except that cash flows are weighted differently to reflect
the differential exposure to various alternative yield curve shifts.

Like the arbitrage and spot rate models, the factors in functional
models are not required to be orthogonal. However, if uncorrelatedness
of factor returns is desired, the three factors in equation (14) can easily
be rotated to have this property, for example, by estimating the factor
returns and extracting the principal components. 

CONCLUSION

Term structure factor models can be classified in one of four categories:
arbitrage models, principal components models, spot rate models, and

EXHIBIT 9.8  Bond Durations: Functional Model

Time to Maturity b1 b2 b3

  0.75   −0.75 −0.67 −0.20
  1.00   −1.00 −0.87 −0.34
  1.50   −1.50 −1.21 −0.71
  2.00   −2.00 −1.50 −1.17
  3.00   −3.00 −1.95 −2.28
  4.00   −4.00 −2.26 −3.51
  5.00   −5.00 −2.45 −4.75
  7.00   −7.00 −2.58 −7.00
10.00 −10.00 −2.40 −9.31
15.00 −15.00 −1.76 −10.25
20.00 −20.00 −1.15 −8.92
30.00 −30.00 −0.41 −4.81

bj wj Th( )shTh
h
∑ sh

h
∑⁄=
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functional models. Examples of those reviewed here are the models of
Cox, Ingersoll and Ross (arbitrage), Litterman and Scheinkman (princi-
pal components), J. P. Morgan’s RiskMetrics™ (spot rate), and Kuberek
(functional). Each approach resembles, in some important way, one or
another of the traditional types of factor models for common stocks,
macroeconomic, statistical, and fundamental. 

As with common stock models, the approaches to term structure
factor models reviewed here differ primarily in the identification of the
factors and in how the factor exposures and factor returns are mea-
sured. Arbitrage models assume some underlying set of state variables,
then derive the term structure and its dynamics. Principal components
models extract factor returns from the excess returns of zero-coupon
bonds at specified maturities using statistical techniques. Spot rate mod-
els associate factors with yield changes at every point (of a specified set)
along the yield curve, and functional models use prespecified yield curve
shifts to fit actual yield curve movements, where the shift components
are motivated by equilibrium considerations.

At the extremes, the one-factor model of Cox, Ingersoll, and Ross is
most rigorously consistent with equilibrium pricing, but is also the most
restrictive in describing actual yield curve movements, while spot rate
models are most descriptive, but have the most factors (and thus, the
most durations) of any approach. Principal components and functional
models find a middle ground, compromising between the structure and
rigorousness of arbitrage models, with few factors, and the explanatory
power of spot rate models, with many. Principal components models
have the advantage that actual data guide in the identification of the fac-
tors, but suffer from the defect that the durations are sample dependent.
Functional models have the advantage that the factors can be prespeci-
fied in a manner that is convenient to the portfolio manager, for example
by defining the factors in such a way that ordinary duration, as conven-
tionally defined, is the first factor.

An important common feature of the models reviewed here relates
to the fact that each one associates factors with characteristic yield
curve movements. Specifically, factor exposures can be estimated in
these models by subjecting a bond to each of the characteristic yield
shifts, using a term structure-based valuation model, or OAS model, to
see how much return results. Indeed, the application of term structure
factor models crucially depends on the availability and usability of these
ancillary valuation models.

The power and usefulness of term structure factor models lie in their
application to risk management. Once the moments of the model are
determined together with the exposures of the portfolio to each of the
factors, it becomes possible to measure portfolio risk in any number of
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ways, including return variance, tracking error relative to a benchmark,
and value-at-risk. By further assuming that the factor returns are nor-
mally distributed, it becomes possible to characterize the distribution of
portfolio return fully, regardless of its composition. 
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he classical definition of investment risk is uncertainty of returns, mea-
sured by their volatility. Investments with greater risk are expected to

earn greater returns than less risky alternatives. Asset allocation models
help investors choose the asset mix with the highest expected return given
their risk constraints (for example, avoid a loss of more than 2% per year
in a given portfolio).

Once investors have selected a desired asset mix, they often enlist
specialized asset managers to implement their investment goals. The
performance of the portfolio is usually compared with a benchmark that
reflects the investor’s asset selection decision. From the perspective of
most asset managers, risk is defined by performance relative to the
benchmark rather than by absolute return. In this sense, the least-risky
investment portfolio is one that replicates the benchmark. Any portfolio

T

* Wei Wu coauthored the original version of the paper from which this chapter is de-
rived. The authors would like to thank Jack Malvey for his substantial contribution
to this paper and Ravi Mattu, George Williams, Ivan Gruhl, Amitabh Arora, Vadim
Konstantinovsky, Peter Lindner, and Jonathan Carmel for their valuable comments.
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deviation from the benchmark entails some risk. For example, to the
manager of a bond fund benchmarked against the High Yield Index,
investing 100% in U.S. Treasuries would involve a much greater long-
term risk than investing 100% in high yield corporate bonds. In other
words, benchmark risk belongs to the plan sponsor, while the asset
manager bears the risk of deviating from the benchmark.

In this chapter we discuss a risk model developed at Lehman Broth-
ers that focuses on portfolio risk relative to a benchmark. The risk
model is designed for use by fixed-income portfolio managers bench-
marked against broad market indices.

QUANTIFYING RISK

Given our premise that the least-risky portfolio is the one that exactly
replicates the benchmark, we proceed to compare the composition of a
fixed-income portfolio to that of its benchmark. Are they similar in
exposures to changes in the term structure of interest rates, in alloca-
tions to different asset classes within the benchmark, and in allocations
to different quality ratings? Such portfolio versus benchmark compari-
sons form the foundation for modern fixed-income portfolio manage-
ment. Techniques such as “stratified sampling” or “cell-matching” have
been used to construct portfolios that are similar to their benchmarks in
many components (i.e., duration, quality, etc.). However, these tech-
niques can not answer quantitative questions concerning portfolio risk.
How much risk is there? Is portfolio A more or less risky than portfolio
B? Will a given transaction increase or decrease risk? To best decrease
risk relative to the benchmark, should the focus be on better aligning
term structure exposures or sector allocations? How do we weigh these
different types of risk against each other? What actions can be taken to
mitigate the overall risk exposure? Any quantitative model of risk must
account for the magnitude of a particular event as well as its likelihood.
When multiple risks are modeled simultaneously, the issue of correla-
tion also must be addressed.

The risk model we present in this article provides quantitative
answers to such questions. This multi-factor model compares portfolio
and benchmark exposures along all dimensions of risk, such as yield
curve movement, changes in sector spreads, and changes in implied vol-
atility. Exposures to each risk factor are calculated on a bond-by-bond
basis and aggregated to obtain the exposures of the portfolio and the
benchmark.

Tracking error, which quantifies the risk of performance difference
(projected standard deviation of the return difference) between the
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portfolio and the benchmark, is projected based on the differences in
risk factor exposures. This calculation of overall risk incorporates his-
torical information about the volatility of each risk factor and the cor-
relations among them. The volatilities and correlations of all the risk
factors are stored in a covariance matrix, which is calibrated based on
monthly returns of individual bonds in the Lehman Brothers Aggregate
Index dating back to 1987. The model is updated monthly with histor-
ical information. The choice of risk factors has been reviewed periodi-
cally since the model’s introduction in 1990. The model covers U.S.
dollar-denominated securities in most Lehman Brothers domestic fixed-
rate bond indices (Aggregate, High Yield, Eurobond). The effect of
non-index securities on portfolio risk is measured by mapping onto
index risk categories. The net effect of all risk factors is known as sys-
tematic risk.

The model is based on historical returns of individual securities and
its risk projections are a function of portfolio and benchmark positions
in individual securities. Instead of deriving risk factor realizations from
changes in market averages (such as a Treasury curve spline, sector
spread changes, etc.) the model derives them from historical returns of
securities in Lehman Indices. While this approach is much more data
and labor intensive, it allows us to quantify residual return volatility of
each security after all systematic risk factors have been applied. As a
result, we can measure nonsystematic risk of a portfolio relative to the
benchmark based on differences in their diversification. This form of
risk, also known as concentration risk or security-specific risk, is the
result of a portfolio’s exposure to individual bonds or issuers. Nonsys-
tematic risk can represent a significant portion of the overall risk, par-
ticularly for portfolios containing relatively few securities, even for
assets without any credit risk.

PORTFOLIO MANAGEMENT WITH THE RISK MODEL

Passive portfolio managers, or “indexers,” seek to replicate the returns
of a broad market index. They can use the risk model to help keep the
portfolio closely aligned with the index along all risk dimensions. Active
portfolio managers attempt to outperform the benchmark by position-
ing the portfolio to capitalize on market views. They can use the risk
model to quantify the risk entailed in a particular portfolio position rel-
ative to the market. This information is often incorporated into the per-
formance review process, where returns achieved by a particular
strategy are weighed against the risk taken. Enhanced indexers express
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views against the index, but limit the amount of risk assumed. They can
use the model to keep risk within acceptable limits and to highlight
unanticipated market exposures that might arise as the portfolio and
index change over time. These management styles can be associated
with approximate ranges of tracking errors. Passive managers typically
seek tracking errors of 5 to 25 basis points per year. Tracking errors for
enhanced indexers range from 25 to 75 bp, and those of active manag-
ers are even higher.

WHY A MULTI-FACTOR MODEL?

With the abundance of data available in today’s marketplace, an asset
manager might be tempted to build a risk model directly from the his-
torical return characteristics of individual securities. The standard devi-
ation of a security’s return in the upcoming period can be projected to
match its past volatility; the correlation between any two securities can
be determined from their historical performance. Despite the simplicity
of this scheme, the multi-factor approach has several important advan-
tages. First of all, the number of risk factors in the model is much
smaller than the number of securities in a typical investment universe.
This greatly reduces the matrix operations needed to calculate portfolio
risk. This increases the speed of computation (which is becoming less
important with gains in processing power) and, more importantly,
improves the numerical stability of the calculations. A large covariance
matrix of individual security volatilities and correlations is likely to
cause numerical instability. This is especially true in the fixed-income
world, where returns of many securities are very highly correlated. Risk
factors may also exhibit moderately high correlations with each other,
but much less so than for individual securities.1

A more fundamental problem with relying on individual security
data is that not all securities can be modeled adequately in this way.
For illiquid securities, pricing histories are either unavailable or unreli-
able; for new securities, histories do not exist. For still other securities,
there may be plenty of reliable historical data, but changes in security
characteristics make this data irrelevant to future results. For instance,
a ratings upgrade of an issuer would make future returns less volatile
than those of the past. A change in interest rates can significantly alter
the effective duration of a callable bond. As any bond ages, its duration

1 Some practitioners insist on a set of risk factors that are uncorrelated to each other.
We have found it more useful to select risk factors that are intuitively clear to inves-
tors, even at the expense of allowing positive correlations among the factors.
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shortens, making its price less sensitive to interest rates. A multi-factor
model estimates the risk from owning a particular bond based not on
the historical performance of that bond, but on historical returns of all
bonds with characteristics similar to those currently pertaining to the
bond.

In this article, we present the risk model by way of example. In each
of the following sections, a numerical example of the model’s applica-
tion motivates the discussion of a particular feature. 

THE RISK REPORT

For illustration, we apply the risk model to a sample portfolio of 57
bonds benchmarked against the Lehman Brothers Aggregate Index. The
model produces two important outputs: a tracking error summary
report and a set of risk sensitivities reports that compare the portfolio
composition to that of the benchmark. These various comparative
reports form the basis of our risk analysis, by identifying structural dif-
ferences between the two. Of themselves, however, they fail to quantify
the risk due to these mismatches. The model’s anchor is therefore the
tracking error report, which quantifies the risks associated with each
cross-sectional comparison. Taken together, the various reports pro-
duced by the model provide a complete understanding of the risk of this
portfolio versus its benchmark.

From the overall statistical summary shown in Exhibit 10.1, it can
be seen that the portfolio has a significant term structure exposure, as
its duration (4.82) is longer than that of the benchmark (4.29). In addi-
tion, the portfolio is overexposed to corporate bonds and under-
exposed to Treasuries. We will see this explicitly in the sector report
later; it is reflected in the statistics in Exhibit 10.1 by a higher average
yield and coupon. The overall annualized tracking error, shown at the
bottom of the statistics report, is 52 bp. Tracking error is defined as one
standard deviation of the difference between the portfolio and bench-
mark annualized returns. In simple terms, this means that with a proba-
bility of about 68%, the portfolio return over the next year will be
within ±52 bp of the benchmark return.2

2 This interpretation requires several simplifying assumptions. The 68% confidence
interval assumes that returns are normally distributed, which may not be the case.
Second, this presentation ignores differences in the expected returns of portfolio and
benchmark (due, for example, to a higher portfolio yield). Strictly speaking, the con-
fidence interval should be drawn around the expected outperformance.

10-Dynkin/Hyman/Wu  Page 245  Thursday, August 29, 2002  9:57 AM

http://abcbourse.ir/


246 MODELING FACTOR RISK

Sources of Systematic Tracking Error
What are the main sources of this tracking error? The model identifies
market forces influencing all securities in a certain category as system-
atic risk factors. Exhibit 10.2 divides the tracking error into compo-
nents corresponding to different categories of risk. Looking down the
first column, we see that the largest sources of systematic tracking error
between this portfolio and its benchmark are the differences in sensitiv-
ity to term structure movements (36.3 bp) and to changes in credit
spreads by sector (32 bp) and quality (14.7 bp). The components of sys-
tematic tracking error correspond directly to the groups of risk factors.
A detailed report of the differences in portfolio and benchmark expo-
sures (sensitivities) to the relevant set of risk factors illustrates the origin
of each component of systematic risk.

Sensitivities to risk factors are called factor loadings. They are
expressed in units that depend on the definition of each particular risk
factor. For example, for risk factors representing volatility of corporate
spreads, factor loadings are given by spread durations; for risk factors
measuring volatility of prepayment speed (in units of PSA), factor load-
ings are given by “PSA Duration.” The factor loadings of a portfolio or
an index are calculated as a market-value weighted average over all con-

EXHIBIT 10.1  Top-Level Statistics Comparison 
Sample Portfolio versus Aggregate Index, 9/30/98

Portfolio Benchmark

Number of Issues 57    6,932 
Average Maturity/Average Life (years)   9.57            8.47
Internal Rate of Return (%)   5.76            5.54
Average Yield to Maturity (%)   5.59            5.46
Average Yield to Worst (%)   5.53            5.37
Average Option-Adjusted Convexity     0.04          

 

−0.22
Average OAS to Maturity (bp) 74        61
Average OAS to Worst (bp) 74         61
Portfolio Mod. Adjusted Duration     4.82             4.29
Portfolio Average Price 108.45         107.70
Portfolio Average Coupon (%)     7.33             6.98

Risk Characteristics
Estimated Total Tracking Error (bp/year)  52    
Portfolio Beta     1.05
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stituent securities. Differences between portfolio and benchmark factor
loadings form a vector of active portfolio exposures. A quick compari-
son of the magnitudes of the different components of tracking error
highlights the most significant mismatches.

* Isolated Tracking Error is the projected deviation between the portfolio and
benchmark return due to a single category of systematic risk. Cumulative Tracking
Error shows the combined effect of all risk categories from the first one in the table
to the current one. 

EXHIBIT 10.2  Tracking Error Breakdown for Sample Portfolio
Sample Portfolio versus Aggregate Index, 9/30/98

Tracking Error (bp/Year)

Isolated Cumulative
Change in

Cumulative*

Tracking Error Term Structure 36.3 36.3 36.3

Non-Term Structure 39.5
Tracking Error Sector 32.0 38.3   2.0
Tracking Error Quality 14.7 44.1   5.8
Tracking Error Optionality   1.6 44.0

 

−0.1
Tracking Error Coupon   3.2 45.5   1.5
Tracking Error MBS Sector   4.9 43.8

 

−1.7
Tracking Error MBS Volatility   7.2 44.5   0.7
Tracking Error MBS Prepayment   2.5 45.0   0.4

Total Systematic Tracking Error 45.0

Nonsystematic Tracking Error
Issuer-specific 25.9
Issue-specific 26.4
Total 26.1
Total Tracking Error 52

Systematic Nonsystematic Total

Benchmark Return Standard Deviation 417   4 417
Portfolio Return Standard Deviation 440 27 440
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Because the largest component of tracking error is due to term struc-
ture, let us examine the term structure risk in our example. Risk factors
associated with term structure movements are represented by the fixed
set of points on the theoretical Treasury spot curve shown in Exhibit
10.3. Each of these risk factors exhibits a certain historical return volatil-
ity. The extent to which the portfolio and the benchmark returns are
affected by this volatility is measured by factor loadings (exposures).
These exposures are computed as percentages of the total present value
of the portfolio and benchmark cash flows allocated to each point on the
curve. The risk of the portfolio performing differently from the bench-
mark due to term structure movements is due to the differences in the
portfolio and benchmark exposures to these risk factors and to their vol-
atilities and correlations. Exhibit 10.3 compares the term structure expo-
sures of the portfolio and benchmark for our example. The Difference

EXHIBIT 10.3  Term Structure Report 
Sample Portfolio versus Aggregate Index, 9/30/98

Cash Flows

Year Portfolio Benchmark Difference

  0.00 1.45% 1.85%

 

−0.40%
  0.25 3.89   4.25   

 

−0.36
  0.50 4.69   4.25   0.45 
  0.75  4.34   3.76   0.58 
  1.00 8.90   7.37   1.53 
  1.50 7.47   10.29     

 

−2.82
  2.00 10.43     8.09   2.34 
  2.50 8.63   6.42   2.20 
  3.00 4.28   5.50   

 

−1.23
  3.50 3.90   4.81   

 

−0.92
  4.00 6.74   7.19   

 

−0.46
  5.00 6.13   6.96   

 

−0.83
  6.00 3.63   4.67   

 

−1.04
  7.00 5.77   7.84   

 

−2.07
10.00 7.16   7.37   

 

−0.21
15.00 4.63   3.88   0.75 
20.00 3.52   3.04   0.48 
25.00 3.18   1.73   1.45 
30.00 1.22   0.68   0.54 
40.00 0.08   0.07   0.01 
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column shows the portfolio to be overweighted in the 2-year section of
the curve, underweighted in the 3- to 10-year range, and overweighted at
the long end. This makes the portfolio longer than the benchmark and
more barbelled.

The tracking error is calculated from this vector of differences
between portfolio and benchmark exposures. However, mismatches at
different points are not treated equally. Exposures to factors with higher
volatilities have a larger effect on tracking error. In this example, the
risk exposure with the largest contribution to tracking error is the over-
weight of 1.45% to the 25-year point on the curve. While other vertices
have larger mismatches (e.g., –2.07% at 7 years), their overall effect on
risk is not as strong because the longer duration of a 25-year zero causes
it to have a higher return volatility. It should also be noted that the risk
caused by overweighting one segment of the yield curve can sometimes
be offset by underweighting another. Exhibit 10.3 shows the portfolio
to be underexposed to the 1.50-year point on the yield curve by –2.82%
and overexposed to the 2.00-year point on the curve by +2.34%. Those
are largely offsetting positions in terms of risk because these two adja-
cent points on the curve are highly correlated and almost always move
together. To eliminate completely the tracking error due to term struc-
ture, differences in exposures to each term structure risk factor need to
be reduced to zero. To lower term structure risk, it is most important to
focus first on reducing exposures at the long end of the curve, particu-
larly those that are not offset by opposing positions in nearby points.

The tracking error due to sector exposures is explained by the
detailed sector report shown in Exhibit 10.4. This report shows the sec-
tor allocations of the portfolio and the benchmark in two ways. In addi-
tion to reporting the percentage of market value allocated to each
sector, it shows the contribution of each sector to the overall spread
duration.3 These contributions are computed as the product of the per-
centage allocations to a sector and the market-weighted average spread
duration of the holdings in that sector. Contributions to spread duration
(factor loadings) measure the sensitivity of return to systematic changes
in particular sector spreads (risk factors) and are a better measure of
risk than simple market allocations. The rightmost column in this
report, the difference between portfolio and benchmark contributions to
spread duration in each sector, is the exposure vector that is used to

3 Just as traditional duration can be defined as the sensitivity of bond price to a
change in yield, spread duration is defined as the sensitivity of bond price to a change
in spread. While this distinction is largely academic for bullet bonds, it can be signif-
icant for other securities, such as bonds with embedded options and floating-rate se-
curities. The sensitivity to spread change is the correct measure of sector risk.
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compute tracking error due to sector. A quick look down this column
shows that the largest exposures in our example are an underweight of
0.77 years to Treasuries and an overweight of 1.00 years to consumer
non-cyclicals in the industrial sector. (The fine-grained breakdown of
the corporate market into industry groups corresponds to the second
tier of the Lehman Brothers hierarchical industry classification scheme.)
Note that the units of risk factors and factor loadings for sector risk dif-
fer from those used to model the term structure risk.

EXHIBIT 10.4  Detailed Sector Report
Sample Portfolio versus Aggregate Index, 9/30/98

Portfolio Benchmark Difference

Detailed
Sector

% of 
Portf.

Adj.
Dur.

Contrib. to
Adj. Dur.

% of
Portf.

Adj.
Dur.

Contrib. to
Adj. Dur.

% of
Portf.

Contrib. to
Adj. Dur.

Treasury

Coupon   27.09 5.37 1.45   39.82 5.58 2.22

 

−12.73

 

−0.77

Strip     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Agencies

FNMA     4.13 3.40 0.14     3.56 3.44 0.12     0.57   0.02

FHLB     0.00 0.00 0.00     1.21 2.32 0.03   

 

−1.21

 

−0.03

FHLMC     0.00 0.00 0.00     0.91 3.24 0.03   

 

−0.91

 

−0.03

REFCORP     3.51 11.22  0.39     0.83 12.18  0.10     2.68   0.29

Other Agencies     0.00 0.00 0.00     1.31 5.58 0.07   

 

−1.31

 

−0.07

Financial Inst.

Banking     1.91 5.31 0.10     2.02 5.55 0.11   

 

−0.11

 

−0.01

Brokerage     1.35 3.52 0.05     0.81 4.14 0.03     0.53   0.01

Financial Cos.     1.88 2.92 0.06     2.11 3.78 0.08   

 

−0.23

 

−0.02

Insurance     0.00 0.00 0.00     0.52 7.47 0.04   

 

−0.52

 

−0.04

Other     0.00 0.00 0.00     0.28 5.76 0.02   

 

−0.28

 

−0.02

Industrials

Basic     0.63 6.68 0.04     0.89 6.39 0.06   

 

−0.26

 

−0.01

Capital Goods     4.43 5.35 0.24     1.16 6.94 0.08     3.26   0.16

Consumer Cycl.     2.01 8.37 0.17     2.28 7.10 0.16   

 

−0.27   0.01

Consum. Non-cycl.     8.88 12.54  1.11     1.66 6.84 0.11     7.22   1.00

Energy     1.50 6.82 0.10     0.69 6.89 0.05     0.81   0.05

Technology     1.55 1.58 0.02     0.42 7.39 0.03     1.13

 

−0.01

Transportation     0.71 12.22  0.09     0.57 7.41 0.04     0.14   0.04

Utilities

Electric     0.47 3.36 0.02     1.39 5.02 0.07   

 

−0.93

 

−0.05

Telephone     9.18 2.08 0.19     1.54 6.58 0.10     7.64   0.09

Natural Gas     0.80 5.53 0.04     0.49 6.50 0.03     0.31   0.01

Water     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00
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EXHIBIT 10.4     (Continued)

The analysis of credit quality risk shown in Exhibit 10.5 follows
the same approach. Portfolio and benchmark allocations to different
credit rating levels are compared in terms of contributions to spread
duration. Once again we see the effect of the overweighting of corpo-
rates: There is an overweight of 0.80 years to single As and an under-
weight of –0.57 years in AAAs (U.S. government debt). The risk
represented by tracking error due to quality corresponds to a system-
atic widening or tightening of spreads for a particular credit rating,
uniformly across all industry groups.

As we saw in Exhibit 10.2, the largest sources of systematic risk in
our sample portfolio are term structure, sector, and quality. We have
therefore directed our attention first to the reports that address these
risk components; we will return to them later. Next we examine the
reports explaining optionality risk and mortgage risk, even though
these risks do not contribute significantly to the risk of this particular
portfolio.

Portfolio Benchmark Difference

Detailed
Sector

% of 
Portf.

Adj.
Dur.

Contrib. to
Adj. Dur.

% of
Portf.

Adj.
Dur.

Contrib. to
Adj. Dur.

% of
Portf.

Contrib. to
Adj. Dur.

Yankee

Canadians     1.45 7.87 0.11     1.06 6.67 0.07     0.38   0.04

Corporates     0.49 3.34 0.02     1.79 6.06 0.11   

 

−1.30

 

−0.09

Supranational     1.00 6.76 0.07     0.38 6.33 0.02     0.62   0.04

Sovereigns     0.00 0.00 0.00     0.66 5.95 0.04   

 

−0.66

 

−0.04

Hypothetical     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Cash     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Mortgage

Conventnl. 30-yr.   12.96 1.52 0.20   16.60 1.42 0.24   

 

−3.64

 

−0.04

GNMA 30-yr.     7.53 1.23 0.09     7.70 1.12 0.09   

 

−0.16   0.01

MBS 15-yr.     3.52 1.95 0.07     5.59 1.63 0.09   

 

−2.06

 

−0.02

Balloons     3.03 1.69 0.05     0.78 1.02 0.01     2.25   0.04

OTM     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

European & International

Eurobonds     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

International     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Asset Backed     0.00 0.00 0.00     0.96 3.14 0.03   

 

−0.96

 

−0.03

CMO     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Other     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Totals 100.00 4.82 100.00 4.29     0.00   0.54
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Exhibit 10.6 shows the optionality report. Several different mea-
sures are used to analyze portfolio and benchmark exposures to changes
in the value of embedded options. For callable and putable bonds, the
difference between a bond’s static duration4 and its option-adjusted
duration, known as “reduction due to call,” gives one measure of the
effect of optionality on pricing. This “reduction” is positive for bonds
trading to maturity and negative for bonds trading to a call. These two
categories of bonds are represented by separate risk factors. The expo-
sures of the portfolio and benchmark to this “reduction,” divided into
option categories, constitute one set of factor loadings due to optional-
ity. The model also looks at option delta and gamma, the first and sec-
ond derivatives of option price with respect to security price.

EXHIBIT 10.5  Quality Report
Sample Portfolio versus Aggregate Index, 9/30/98

Portfolio Benchmark Difference

Quality
% of
Portf.

Adj.
Dur.

Cntrb. to
Adj. Dur.

% of
Portf.

Adj.
Dur.

Cntrb. to
Adj. Dur.

% of
Portf.

Cntrb. to
Adj. Dur.

Aaa+   34.72 5.72 1.99   47.32 5.41 2.56

 

−12.60

 

−0.57

MBS   27.04 1.51 0.41   30.67 1.37 0.42   

 

−3.62

 

−0.01

Aaa     1.00 6.76 0.07     2.33 4.84 0.11   

 

−1.33

 

−0.05

Aa     5.54 5.67 0.31     4.19 5.32 0.22     1.35   0.09

A   17.82 7.65 1.36     9.09 6.23 0.57     8.73   0.80

Baa   13.89 4.92 0.68     6.42 6.28 0.40     7.47   0.28

Ba     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

B     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Caa     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Ca or lower     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

NR     0.00 0.00 0.00     0.00 0.00 0.00     0.00   0.00

Totals 100.00 4.82 100.00 4.29     0.00   0.54

4 “Static duration” refers to the traditional duration of the bond assuming a fixed set
of cash flows. Depending on how the bond is trading, these will be the bond’s natural
cash flows either to maturity or to the most likely option redemption date.
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The risks particular to mortgage-backed securities consist of spread
risk, prepayment risk, and convexity risk. The underpinnings for MBS
sector spread risk, like those for corporate sectors, are found in the
detailed sector report shown in Exhibit 10.4. Mortgage-backed securities
are divided into four broad sectors based on a combination of originating
agency and product: conventional 30-year; GNMA 30-year; all 15-year;
and all balloons. The contributions of these four sectors to the portfolio
and benchmark spread durations form the factor loadings for mortgage
sector risk. Exposures to prepayments are shown in Exhibit 10.7. This
group of risk factors corresponds to systematic changes in prepayment
speeds by sector. Thus, the factor loadings represent the sensitivities of
mortgage prices to changes in prepayment speeds (PSA durations). Pre-
mium mortgages will show negative prepayment sensitivities (i.e., prices
will decrease with increasing prepayment speed), while those of discount
mortgages will be positive. To curtail the exposure to sudden changes in
prepayment rates, the portfolio should match the benchmark contributions
to prepayment sensitivity in each mortgage sector. The third mortgage-
specific component of tracking error is due to MBS volatility. Convexity is
used as a measure of volatility sensitivity because volatility shocks will
have the strongest impact on prices of those mortgages whose prepay-
ment options are at the money (current coupons). These securities tend to
have the most negative convexity. Exhibit 10.8 shows the comparison of
portfolio and benchmark contributions to convexity in each mortgage
sector, which forms the basis for this component of tracking error.

Sources of Nonsystematic Tracking Error
In addition to the various sources of systematic risk, Exhibit 10.2 indicates
that the sample portfolio has 26 bp of nonsystematic tracking error, or spe-
cial risk. This risk stems from portfolio concentrations in individual securities
or issuers. The portfolio report in Exhibit 10.9 helps elucidate this risk. The
rightmost column of the exhibit shows the percentage of the portfolio’s mar-
ket value invested in each security. As the portfolio is relatively small, each
bond makes up a noticeable fraction. In particular, there are two extremely
large positions in corporate bonds, issued by GTE Corp. and Coca-Cola.
With $50 million a piece, each of these two bonds represents more than 8%
of the portfolio. A negative credit event associated with either of these firms
(i.e., a downgrade) would cause large losses in the portfolio, while hardly
affecting the highly diversified benchmark. The Aggregate Index consisted of
almost 7,000 securities as of September 30, 1998, so that the largest U.S.
Treasury issue accounts for less than 1%, and most corporate issues contrib-
ute less than 0.01% of the index market value. Thus, any large position in a
corporate issue represents a material difference between portfolio and bench-
mark exposures that must be considered in a full treatment of risk.
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EXHIBIT 10.7  MBS Prepayment Sensitivity Report
Sample Portfolio versus Aggregate Index, 9/30/98

Portfolio Benchmark Difference

MBS
Sector

% of
Portfolio

PSA
Sens.

Cntrb. to
PSA Sens.

% of
Portfolio

PSA
Sens.

Cntrb. to
PSA Sens.

% of
Portfolio

Cntrb. to
PSA Sens.

COUPON < 6.0%

Conventional 0.00   0.00   0.00   0.00   1.28   0.00   0.00   0.00

GNMA 30-yr. 0.00   0.00   0.00   0.00   1.03   0.00   0.00   0.00

15-year MBS 0.00   0.00   0.00   0.14   0.01   0.00 −0.14   0.00

Balloon 0.00   0.00   0.00   0.05 −0.08   0.00 −0.05   0.00

6.0% ≤ COUPON < 7.0%

Conventional 2.90 −1.14 −0.03   5.37 −1.05 −0.06 −2.48   0.02

GNMA 30-yr. 0.76 −1.19 −0.01   1.30 −1.11 −0.01 −0.53   0.01

15-year MBS 3.52 −0.86 −0.03   3.26 −0.88 −0.03   0.26   0.00

Balloon 3.03 −0.54 −0.02   0.48 −0.73   0.00   2.55 −0.01

7.0% ≤ COUPON < 8.0%

Conventional 4.93 −2.10 −0.10   8.32 −2.79 −0.23 −3.39   0.13

GNMA 30-yr. 4.66 −3.20 −0.15   3.90 −2.82 −0.11   0.76 −0.04

15-year MBS 0.00   0.00   0.00   1.83 −1.92 −0.04 −1.83   0.04

Balloon 0.00   0.00   0.00   0.25 −1.98 −0.01 −0.25   0.01

8.0% ≤ COUPON < 9.0%

Conventional 5.14 −3.91 −0.20   2.26 −4.27 −0.10   2.87 −0.10

GNMA 30-yr. 0.00   0.00   0.00   1.71 −4.71 −0.08 −1.71   0.08

15-year MBS 0.00   0.00   0.00   0.31 −2.16 −0.01 −0.31   0.01

Balloon 0.00   0.00   0.00   0.00 −2.38   0.00   0.00   0.00

9.0% ≤ COUPON < 10.0%

Conventional 0.00   0.00   0.00   0.54 −6.64 −0.04 −0.54   0.04

GNMA 30-yr. 2.11 −7.24 −0.15   0.62 −6.05 −0.04   1.49 −0.12

15-year MBS 0.00   0.00   0.00   0.04 −1.61   0.00 −0.04   0.00

Balloon 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00

COUPON ≥ 10.0%

Conventional 0.00   0.00   0.00   0.10 −8.14 −0.01 −0.10   0.01

GNMA 30-yr. 0.00   0.00   0.00   0.17 −7.49 −0.01 −0.17   0.01

15-year MBS 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00

Balloon 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00

Subtotals

Conventional 12.96  −0.34 16.6  −0.43 −3.64   0.09

GNMA 30-yr. 7.53 −0.31   7.70 −0.26 −0.16 −0.06

15-year MBS 3.52 −0.03   5.59 −0.07 −2.06   0.04

Balloon 3.03 −0.02   0.78 −0.01   2.25 −0.01

Totals 27.04  −0.70 30.67 −0.76 −3.62   0.07
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EXHIBIT 10.8  MBS Convexity Analysis
Sample Portfolio versus Aggregate Index, 9/30/98

Portfolio Benchmark Difference

MBS
Sector

% of
Portfolio

Con-
vexity

Cntrb. to
Convexity

% of
Portfolio

Con-
vexity

Cntrb. to
Convexity

% of
Portfolio

Cntrb. to
Convexity

COUPON < 6.0%

Conventional 0.00 0.00 0.00 0.00 −0.56 0.00 0.00 0.00

GNMA 30-yr. 0.00 0.00 0.00 0.00 −0.85 0.00 0.00 0.00

15-year MBS 0.00 0.00 0.00 0.14 −0.88 0.00 −0.14  0.00

Balloon 0.00 0.00 0.00 0.05 −0.48 0.00 −0.05  0.00

6.0% ≤ COUPON < 7.0%

Conventional 2.90 −3.52 −0.10  5.37 −3.19 −0.17 −2.48  0.07

GNMA 30-yr. 0.76 −3.65 −0.03  1.30 −3.13 −0.04 −0.53  0.01

15-year MBS 3.52 −1.78 −0.06  3.26 −2.06 −0.07  0.26 0.00

Balloon 3.03 −1.50 −0.05  0.48 −1.11 −0.01  2.55 −0.04

7.0% ≤ COUPON < 8.0%

Conventional 4.93 −3.39 −0.17  8.32 −2.60 −0.22 −3.39  0.05

GNMA 30-yr. 4.66 −2.40 −0.11  3.90 −2.88 −0.11  0.76 0.00

15-year MBS 0.00   0.00 0.00 1.83 −1.56 −0.03 −1.83  0.03

Balloon 0.00   0.00 0.00 0.25 −0.97 0.00 −0.25  0.00

8.0% ≤ COUPON < 9.0%

Conventional 5.14 −1.27 −0.07  2.26 −1.01 −0.02  2.87 −0.04

GNMA 30-yr. 0.00   0.00 0.00 1.71 −0.56 −0.01 −1.71  0.01

15-year MBS 0.00   0.00 0.00 0.31 −0.93 0.00 −0.31  0.00

Balloon 0.00   0.00 0.00 0.00 −0.96 0.00 0.00 0.00

9.0% ≤ COUPON < 10.0%

Conventional 0.00   0.00 0.00 0.54 −0.80 0.00 −0.54  0.00

GNMA 30-yr. 2.11 −0.34 −0.01  0.62 −0.36 0.00 1.49 −0.01

15-year MBS 0.00   0.00 0.00 0.04 −0.52 0.00 −0.04  0.00

Balloon 0.00   0.00 0.00 0.00   0.00 0.00 0.00 0.00

COUPON ≥ 10.0%

Conventional 0.00   0.00 0.00 0.10 −0.61 0.00 −0.10  0.00

GNMA 30-yr. 0.00   0.00 0.00 0.17 −0.21 0.00 −0.17  0.00

15-year MBS 0.00   0.00 0.00 0.00   0.00 0.00 0.00 0.00

Balloon 0.00   0.00 0.00 0.00   0.00 0.00 0.00 0.00

Subtotals

Conventional 12.96  −0.33  16.6    −0.42 −3.64  0.08

GNMA 30-yr. 7.53 −0.15  7.70 −0.16 −0.16  0.02

15-year MBS 3.52 −0.06  5.59 −0.10 −2.06  0.04

Balloon 3.03 −0.05  0.78 −0.01  2.25 −0.04

Totals 27.04  −0.59  30.67  −0.69 −3.62  0.10
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*  and  are weights of security i in the portfolio and in the benchmark as a
percentage of total market value.  is the variance of residual returns for security
i. It is obtained from historical volatility of security-specific residual returns unex-
plained by the combination of all systematic risk factors. 

The magnitude of the return variance that the risk model associates
with a mismatch in allocations to a particular issue is proportional to
the square of the allocation difference and to the residual return vari-
ance estimated for the issue. This calculation is shown in schematic
form in Exhibit 10.10 and illustrated numerically for our sample portfo-
lio in Exhibit 10.11. With the return variance based on the square of the
market weight, it is dominated by the largest positions in the portfolio.
The set of bonds shown includes those with the greatest allocations in
the portfolio and in the benchmark. The large position in the Coca-Cola
bond contributes 21 bp of the total nonsystematic risk of 26 bp. This is
due to the 8.05% overweighting of this bond relative to its position in
the index and the 77 bp monthly volatility of nonsystematic return that
the model has estimated for this bond. (This estimate is based on bond
characteristics such as sector, quality, duration, age, and amount out-
standing.) The contribution to the annualized tracking error is then
given by

EXHIBIT 10.10  Calculation of Variance Due to Special Risk (Issue-Specific Model)*

Portfolio
Weights

Benchmark
Weights

Contribution to
Issue-Specific Risk

Issue 1

Issue 2

. . .

Issue N − 1

Issue N

Total Issue-Specific Risk

wP1
wB1

wP1
wB1

–( )2σε1

2

wP2
wB2

wP2
wB2

–( )2σε2

2

wPN 1–
wBN 1–

wPN 1–
wBN 1–

–( )2σεN 1–

2

wPN
wBN

wPN
wBN

–( )2σεN

2

wPi
wBi

–( )2σεi

2

i 1=

N

∑

wPi
wBi

σεi

2

12 0.0805 77×( )2× 21=
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While the overweighting to GTE is larger in terms of percentage of
market value, the estimated risk is lower due to the much smaller non-
systematic return volatility (37 bp). This is mainly because the GTE
issue has a much shorter maturity (12/2000) than the Coca-Cola issue
(11/2026). For bonds of similar maturities, the model tends to assign
higher special risk volatilities to lower-rated issues. Thus, mismatches in
low-quality bonds with long duration will be the biggest contributors to
nonsystematic tracking error. We assume independence of the risk from
individual bonds, so the overall nonsystematic risk is computed as the
sum of the contributions to variance from each security. Note that mis-
matches also arise due to bonds that are underweighted in the portfolio.
Most bonds in the index do not appear in the portfolio, and each miss-
ing bond contributes to tracking error. However, the percentage of the
index each bond represents is usually very small. Besides, their contribu-
tions to return variance are squared in the calculation of tracking error.
Thus, the impact of bonds not included in the portfolio is usually insig-
nificant. The largest contribution to tracking error stemming from an
underweighting to a security is due to the 1998 issuance of FNMA 30-
year 6.5% pass-throughs, which represents 1.16% of the benchmark.
Even this relatively large mismatch contributes only a scant 1 bp to
tracking error.

This nonsystematic risk calculation is carried out twice, using two
different methods. In the issuer-specific calculation, the holdings of the
portfolio and benchmark are not compared on a bond-by-bond basis, as
in Exhibits 10.10 and 10.11, but are first aggregated into concentra-
tions in individual issuers. This calculation is based on the assumption
that spreads of bonds of the same issuer tend to move together. There-
fore, matching the benchmark issuer allocations is sufficient. In the
issue-specific calculation, each bond is considered an independent
source of risk. This model recognizes that large exposures to a single
bond can incur more risk than a portfolio of all of an issuer’s debt. In
addition to credit events that affect an issuer as a whole, individual
issues can be subject to various technical effects. For most portfolios,
these two calculations produce very similar results. In certain circum-
stances, however, there can be significant differences. For instance, some
large issuers use an index of all their outstanding debt as an internal
performance benchmark. In the case of a single-issuer portfolio and
benchmark, the issue-specific risk calculation will provide a much better
measure of nonsystematic risk. The reported nonsystematic tracking
error of 26.1 bp for this portfolio, which contributes to the total track-
ing error, is the average of the results from the issuer-specific and issue-
specific calculations.
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Combining Components of Tracking Error
Given the origins of each component of tracking error shown in Exhibit
10.2, we can address the question of how these components combine to
form the overall tracking error. Of the 52 bp of overall tracking error
(TE), 45 bp correspond to systematic TE and 26 bp to nonsystematic
TE. The net result of these two sources of tracking error does not equal
their sum. Rather, the squares of these two numbers (which represent
variances) sum to the variance of the result. Next we take its square
root to obtain the overall TE ([45.02 + 26.12]0.5 = 52.0). This illustrates
the risk-reducing benefits of diversification from combining independent
(zero correlation) sources of risk.

When components of risk are not assumed to be independent, corre-
lations must be considered. At the top of Exhibit 10.2, we see that the
systematic risk is composed of 36.3 bp of term structure risk and 39.5
bp from all other forms of systematic risk combined (non-term structure
risk). If these two were independent, they would combine to a system-
atic tracking error of 53.6 bp ([36.32 + 39.52]0.5 = 53.6). The combined
systematic tracking error of only 45 bp reflects negative correlations
among certain risk factors in the two groups. 

The tracking error breakdown report in Exhibit 10.2 shows the sub-
components of tracking error due to sector, quality, and so forth. These
sub-components are calculated in two different ways. In the first col-
umn, we estimate the isolated tracking error due to the effect of each
group of related risk factors considered alone. The tracking error due to
term structure, for example, reflects only the portfolio/benchmark mis-
matches in exposures along the yield curve, as well as the volatilities of
each of these risk factors and the correlations among them. 

Similarly, the tracking error due to sector reflects only the mismatches
in sector exposures, the volatilities of these risk factors, and the correla-
tions among them. However, the correlations between the risk factors due
to term structure and those due to sector do not participate in either of
these calculations. Exhibit 10.12 depicts an idealized covariance matrix
containing just three groups of risk factors relating to the yield curve (Y),
sector spreads (S), and quality spreads (Q). Exhibit 10.12a illustrates how
the covariance matrix is used to calculate the subcomponents of tracking
error in the isolated mode. The three shaded blocks represent the parts of
the matrix that pertain to: movements of the various points along the yield
curve and the correlations among them (Y × Y); movements of sector
spreads and the correlations among them (S × S); and movements of quality
spreads and the correlations among them (Q × Q). The unshaded portions
of the matrix, which deal with the correlations among different sets of risk
factors, do not contribute to any of the partial tracking errors.
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EXHIBIT 10.12  Illustration of “Isolated” and “Cumulative” Calculations of 
Tracking Error Subcomponents*
a. Isolated Calculation of Tracking Error Components

b. Cumulative Calculation of Tracking Error Components

* Y – Yield curve risk factors; S – Sector spread risk factors; Q – Credit Quality
spread risk factors.

The next two columns of Exhibit 10.2 represent a different way of
subdividing tracking error. The middle column shows the cumulative
tracking error, which incrementally introduces one group of risk factors
at a time to the tracking error calculation. In the first row, we find 36.3
bp of tracking error due to term structure. In the second, we see that if
term structure and sector risk are considered together, while all other
risks are ignored, the tracking error increases to 38.3 bp. The rightmost
column shows that the resulting “change in tracking error” due to the
incremental inclusion of sector risk is 2.0 bp. As additional groups of
risk factors are included, the calculation converges toward the total sys-
tematic tracking error, which is obtained with the use of the entire
matrix. Exhibit 10.12b illustrates the rectangular section of the covari-
ance matrix that is used at each stage of the calculation. The incremen-
tal tracking error due to sector reflects not only the effect of the S × S
box in the diagram, but the S × Y and Y × S cross terms as well. That is,
the partial tracking error due to sector takes into account the correla-
tions between sector risk and yield curve risk. It answers the question,
“Given the exposure to yield curve risk, how much more risk is intro-
duced by the exposure to sector risk?”

The incremental approach is intuitively pleasing because the partial
tracking errors (the “Change in Tracking Error” column of Exhibit
10.2) add up to the total systematic tracking error. Of course, the order
in which the various partial tracking errors are considered will affect the
magnitude of the corresponding terms. Also, note that some of the par-
tial tracking errors computed in this way are negative. This reflects neg-

Y × Y Y × S Y × Q

S × Y S × S S × Q
Q × Y Q × S Q × Q

Y × Y Y × S Y × Q

S × Y S × S S × Q

Q × Y Q × S Q × Q
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ative correlations among certain groups of risk factors. For example, in
Exhibit 10.2, the incremental risk due to the MBS Sector is –1.7 bp.

The two methods used to subdivide tracking error into different
components are complementary and serve different purposes. The iso-
lated calculation is ideal for comparing the magnitudes of different
types of risk to highlight the most significant exposures. The cumulative
approach produces a set of tracking error subcomponents that sum to
the total systematic tracking error and reflect the effect of correlations
among different groups of risk factors. The major drawback of the
cumulative approach is that results are highly dependent on the order in
which they are computed. The order currently used by the model was
selected based on the significance of each type of risk; it may not be
optimal for every portfolio/benchmark combination.

Other Risk Model Outputs
The model’s analysis of portfolio and benchmark risk is not limited to
the calculation of tracking error. The model also calculates the absolute
return volatilities (sigmas) of portfolio and benchmark. Portfolio sigma
is calculated in the same fashion as tracking error, but is based on the
factor loadings (sensitivities to market factors) of the portfolio, rather
than on the differences from the benchmark. Sigma represents the vola-
tility of portfolio returns, just as tracking error represents the volatility
of the return difference between portfolio and benchmark. Also like
tracking error, sigma consists of systematic and nonsystematic compo-
nents, and the volatility of the benchmark return is calculated in the
same way. Both portfolio and benchmark sigmas appear at the bottom
of the tracking error report (Exhibit 10.2). Note that the tracking error
of 52 bp (the annualized volatility of return difference) is greater than
the difference between the return volatilities (sigmas) of the portfolio
and the benchmark (440 bp − 417 bp = 23 bp). It is easy to see why this
should be so. Assume a benchmark of Treasury bonds, whose entire risk
is due to term structure. A portfolio of short-term, high-yield corporate
bonds could be constructed such that the overall return volatility would
match that of the Treasury benchmark. The magnitude of the credit risk
in this portfolio might match the magnitude of the term structure risk in
the benchmark, but the two would certainly not cancel each other out.
The tracking error in this case might be larger than the sigma of either
the portfolio or the benchmark.

In our example, the portfolio sigma is greater than that of the
benchmark. Thus, we can say that the portfolio is “more risky” than the
benchmark—its longer duration makes it more susceptible to a rise in
interest rates. What if the portfolio was shorter than the benchmark and
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had a lower sigma? In this sense, we could consider the portfolio to be
less risky. However, tracking error could be just as big given its capture
of the risk of a yield curve rally in which the portfolio would lag. To
reduce the risk of underperformance (tracking error), it is necessary to
match the risk exposures of portfolio and benchmark. Thus, the reduc-
tion of tracking error will typically result in bringing portfolio sigma
nearer to that of the benchmark; but sigma can be changed in many
ways that will not necessarily improve the tracking error.

It is interesting to compare the nonsystematic components of port-
folio and benchmark risk. The first thing to notice is that, when viewed
in the context of the overall return volatility, the effect of nonsystematic
risk is negligible. To the precision shown, for both the portfolio and
benchmark, the overall sigma is equal to its systematic part. The portfolio-
level risk due to individual credit events is very small when compared to
the total volatility of returns, which includes the entire exposure to all
systematic risks, notably yield changes. The portfolio also has signifi-
cantly more nonsystematic risk (27 bp) than does the benchmark (4 bp),
because the latter is much more diversified. In fact, because the bench-
mark exposures to any individual issuer are so close to zero, the nonsys-
tematic tracking error (26 bp) is almost the same as the nonsystematic
part of portfolio sigma. Notice that the nonsystematic risk can form a
significant component of the tracking error (26.1 bp out of a total of 52
bp) even as it is a negligible part of the absolute return volatility.

Another quantity calculated by the model is beta, which measures the
risk of the portfolio relative to that of the benchmark. The beta for our
sample portfolio is 1.05, as shown at the bottom of Exhibit 10.1. This
means that the portfolio is more risky (volatile) than the benchmark. For
every 100 bp of benchmark return (positive or negative), we would expect
to see 105 bp for the portfolio. It is common to compare the beta pro-
duced by the risk model with the ratio of portfolio and benchmark dura-
tions. In this case, the duration ratio is 4.82/4.29 = 1.12, which is
somewhat larger than the risk model beta. This is because the duration-
based approach considers only term structure risk (and only parallel shift
risk at that), while the risk model includes the combined effects of all rel-
evant forms of risk, along with the correlations among them.

RISK MODEL APPLICATIONS

In this section we explore several applications of the model to portfolio
management.
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Quantifying Risk Associated with a View
The risk model is primarily a diagnostic tool. Whatever position a port-
folio manager has taken relative to the benchmark, the risk model will
quantify how much risk has been assumed. This helps measure the risk
of the exposures taken to express a market view. It also points out the
potential unintended risks in the portfolio. 

Many firms use risk-adjusted measures to evaluate portfolio perfor-
mance. A high return achieved by a series of successful but risky market
plays may not please a conservative pension plan sponsor. A more modest
return, achieved while maintaining much lower risk versus the benchmark,
might be seen as a healthier approach over the long term. This point of view
can be reflected either by adjusting performance by the amount of risk taken
or by specifying in advance the acceptable level of risk for the portfolio. In
any case, the portfolio manager should be cognizant of the risk inherent in a
particular market view and weigh it against the anticipated gain. The
increasing popularity of risk-adjusted performance evaluation is evident in
the frequent use of the concept of an information ratio—portfolio outper-
formance of the benchmark per unit of standard deviation of observed out-
performance. Plan sponsors often diversify among asset managers with
different styles, looking for some of them to take more risk and for others to
stay conservative, but always looking for high information ratios.

Risk Budgeting
To limit the amount of risk that may be taken by its portfolio managers, a
plan sponsor can prescribe a maximum allowable tracking error. In the
past, an asset management mandate might have put explicit constraints on
deviation from the benchmark duration, differences in sector allocations,
concentration in a given issuer, and total percentage invested outside the
benchmark. Currently, we observe a tendency to constrain the overall risk
versus the benchmark and leave the choice of the form of risk to the portfo-
lio manager based on current risk premia offered by the market. By
expressing various types of risk in the same units of tracking error, the
model makes it possible to introduce the concept of opportunistic risk bud-
get allocation. To constrain specific types of risk, limits can be applied to
the different components of tracking error produced by the model. As
described above, the overall tracking error represents the best way to quan-
tify the net effect of multiple dimensions of risk in a single number.

With the model-specific nature of tracking error, there may be situa-
tions where the formal limits to be placed on the portfolio manager must
be expressed in more objective terms. Constraints commonly found in
investment policies include limits on the deviation between the portfolio
and the benchmark, both in terms of Treasury duration and in spread
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duration contributions from various fixed-income asset classes. Because
term structure risk tends to be best understood, many organizations have
firm limits only for the amount of duration deviation allowed. For exam-
ple, a portfolio manager may be limited to ±1 around benchmark dura-
tion. How can this limit be applied to risks along a different dimension?

The risk model can help establish relationships among risks of dif-
ferent types by comparing their tracking errors. Exhibit 10.13 shows the
tracking errors achieved by several different blends of Treasury and
spread product indices relative to the Treasury Index. A pure Treasury
composite (Strategy 1) with duration one year longer than the bench-
mark has a tracking error of 85 bp per year. Strategies 2 and 3 are cre-
ated by combining the investment-grade Corporate Index with both
intermediate and long Treasury Indices to achieve desired exposures to
spread duration while remaining neutral to the benchmark in Treasury
duration. Similar strategies are engaged to generate desired exposures to
spread duration in the MBS and high-yield markets. As can be seen in
Exhibit 10.13, an increase in pure Treasury duration by 1 (Strategy 1) is
equivalent to an extension in corporate spread duration by 2.5, or an
extension in high-yield spread duration by about 0.75. Our results with
MBS spreads show that an MBS spread duration of 1 causes a tracking
error of 58 bp, while a duration of 1.5 gives a tracking error of 87 bp. A
simple linear interpolation would suggest that a tracking error of 85 bp
(the magnitude of the risk of an extension of duration by 1) thus corre-
sponds to an extension in MBS spread duration of approximately 1.47.

Of course, these are idealized examples in which spread exposure to
one type of product is changed while holding Treasury duration constant.
A real portfolio is likely to take risks in all dimensions simultaneously. To
calculate the tracking error, the risk model considers the correlations
among the different risk factors. As long as two risks along different dimen-
sions are not perfectly correlated, the net risk is less than the sum of the
two risks. For example, we have established that a corporate spread dura-
tion of 2.5 produces roughly the same risk as a Treasury duration of 1, each
causing a tracking error of about 85 bp. For a portfolio able to take both
types of risk, an investor might allocate half of the risk budget to each, set-
ting limits on Treasury duration of 0.5 and on corporate spread duration of
1.25. This should keep the risk within the desired range of tracking error.
As shown in Exhibit 10.13, this combination of risks produces a tracking
error of only 51 bp. This method of allocating risk under a total risk budget
(in terms of equivalent duration mismatches) can provide investors with a
method of controlling risk that is easier to implement and more conserva-
tive than a direct limit on tracking error. This macro view of risk facilitates
the capablity to set separate but uniformly expressed limits on portfolio
managers responsible for different kinds of portfolio exposures.
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Projecting the Effect of Proposed Transactions on 
Tracking Error
Proposed trades are often analyzed in the context of a 1-for-1 (substitu-
tion) swap. Selling a security and using the proceeds to buy another may
earn a few additional basis points of yield. The risk model allows analy-
sis of such a trade in the context of the portfolio and its benchmark. By
comparing the current portfolio versus benchmark risk and the pro
forma risk after the proposed trade, an asset manager can evaluate how
well the trade fits the portfolio. Our portfolio analytics platform offers
an interactive mode to allow portfolio modifications and immediately
see the effect on tracking error. 

For example, having noticed that our sample portfolio has an
extremely large position in the Coca-Cola issue, we might decide to cut
the size of this position in half. To avoid making any significant changes
to the systematic risk profile of the portfolio, we might look for a bond
with similar maturity, credit rating, and sector. Exhibit 10.14 shows an
example of such a swap. Half the position in the Coca-Cola 30-year
bond is replaced by a 30-year issue from Anheuser-Busch, another single-
A rated issuer in the beverage sector. As shown later, this transaction
reduces nonsystematic tracking error from 26 bp to 22 bp. While we
have unwittingly produced a 1 bp increase in the systematic risk (the
durations of the two bonds were not identical), the overall effect was a
decrease in tracking error from 52 bp to 51 bp.

Optimization
For many portfolio managers, the risk model acts not only as a measure-
ment tool but plays a major role in the portfolio construction process.
The model has a unique optimization feature that guides investors to
transactions that reduce portfolio risk. The types of questions it
addresses are: What single transaction can reduce the risk of the portfo-
lio relative to the benchmark the most? How could the tracking error be
reduced with minimum turnover? The portfolio manager is given an
opportunity to intervene at each step in the optimization process and

EXHIBIT 10.14  A Simple Diversification Trade: 
Cut the Size of the Largest Position in Half

Issuer Coupon Maturity

Par
Value

($000s)
MV

($000s) Sector Quality
Dur
Adj.

Sell: Coca-Cola Enterprises Inc. 6.95 11/15/2026 25000 27053 IND A3 12.37

Buy: Anheuser-Busch Co., Inc. 6.75 12/15/2027 25000 26941 IND A1 12.86
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select transactions that lead to the desired changes in the risk profile of
the portfolio and are practical at the same time.

As in any portfolio optimization procedure, the first step is to
choose the set of assets that may be purchased. The composition of this
investable universe, or bond swap pool, is critical. This universe should
be large enough to provide flexibility in matching all benchmark risk
exposures, yet it should contain only securities that are acceptable can-
didates for purchase. This universe may be created by querying a bond
database (selecting, for instance, all corporate bonds with more than
$500 million outstanding that were issued in the last three years) or by
providing a list of securities available for purchase.

Once the investable universe has been selected, the optimizer begins
an iterative process (known as gradient descent), searching for 1-for-1
bond swap transactions that will achieve the investor’s objective. In the
simplest case, the objective is to minimize the tracking error. The bonds in
the swap pool are ranked in terms of reduction in tracking error per unit
of each bond purchased. The system indicates which bond, if purchased,
will lead to the steepest decline in tracking error, but leaves the ultimate
choice of the security to the investor. Once a bond has been selected for
purchase, the optimizer offers a list of possible market-value-neutral
swaps of this security against various issues in the portfolio (with the
optimal transaction size for each pair of bonds), sorted in order of possi-
ble reduction in tracking error. Investors are free to adjust the model’s
recommendations, either selecting different bonds to sell or adjusting
(e.g., rounding off) recommended trade amounts.

Exhibit 10.15 shows how this optimization process is used to mini-
mize the tracking error of the sample portfolio. A close look at the
sequence of trades suggested by the optimizer reveals that several types
of risk are reduced simultaneously. In the first trade, the majority of the
large position in the Coca-Cola 30-year bond is swapped for a 3-year
Treasury. This trade simultaneously changes systematic exposures to
term structure, sector, and quality; it also cuts one of the largest issuer
exposures, reducing nonsystematic risk. This one trade brings the over-
all tracking error down from 52 bp to 29 bp. As risk declines and the
portfolio risk profile approaches the benchmark, there is less room for
such drastic improvements. Transaction sizes become smaller, and the
improvement in tracking error with each trade slows. The second and
third transactions continue to adjust the sector and quality exposures
and fine-tune the risk exposures along the curve. The fourth transaction
addresses the other large corporate exposure, cutting the position in
GTE by two-thirds. The first five trades reduce the tracking error to 16
bp, creating an essentially passive portfolio.
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EXHIBIT 10.15  Sequence of Transactions Selected by Optimizer Showing 
Progressively Smaller Tracking Error, $000s
Initial Tracking Error: 52.0 bp

Transaction # 1

Sold: 31000 of COCA-COLA ENTERPRISES 6.950 2026/11/15

Bought: 30000 of U.S. TREASURY NOTES 8.000 2001/05/15

Cash Left Over: −17.10

New Tracking Error: 29.4 bp

Cost of this Transaction: 152.500

Cumulative Cost: 152.500

Transaction # 2

Sold: 10000 of LOCKHEED MARTIN 6.550 1999/05/15

Bought: 9000 of U.S. TREASURY NOTES 6.125 2007/08/15

Cash Left Over: 132.84

New Tracking Error: 25.5 bp

Cost of this Transaction: 47.500

Cumulative Cost: 200.000

Transaction # 3

Sold: 4000 of NORFOLK SOUTHERN CORP. 7.800 2027/05/15

Bought: 3000 of U.S. TREASURY BONDS 10.625 2015/08/15

Cash Left Over: −8.12

New Tracking Error: 23.1 bp

Cost of this Transaction: 17.500

Cumulative Cost: 217.500

Transaction # 4

Sold: 33000 of GTE CORP. 9.375 2000/12/01

Bought: 34000 of U.S. TREASURY NOTES 6.625 2002/03/31

Cash Left Over:  412.18

New Tracking Error: 19.8 bp

Cost of this Transaction: 167.500

Cumulative Cost: 385.000

Transaction # 5

Sold: 7000 of COCA-COLA ENTERPRISES 6.950 2026/11/15

Bought: 8000 of U.S. TREASURY NOTES 6.000 2000/08/15

Cash Left Over: −304.17

New Tracking Error: 16.4 bp

Cost of this Transaction: 37.500

Cumulative Cost: 422.500
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An analysis of the tracking error for this passive portfolio is shown
in Exhibit 10.16. The systematic tracking error has been reduced to just
10 bp and the nonsystematic risk to 13 bp. Once systematic risk drops
below nonsystematic risk, the latter becomes the limiting factor. In turn,
further tracking error reduction by just a few transactions becomes
much less likely. When there are exceptionally large positions, like the
two mentioned in the above example, nonsystematic risk can be reduced
quickly. Upon completion of such risk reduction transactions, further
reduction of tracking error requires a major diversification effort. The
critical factor that determines nonsystematic risk is the percentage of
the portfolio in any single issue. On average, a portfolio of 50 bonds has
2% allocated to each position. To reduce this average allocation to 1%,
the number of bonds would need to be doubled.

EXHIBIT 10.16  Tracking Error Summary
Passive Portfolio versus Aggregate Index, 9/30/98

Tracking Error (bp/Year)

Isolated Cumulative Change

Tracking Error Term Structure 7.0   7.0 7.0
Non-Term Structure 9.6
Tracking Error Sector 7.4 10.5 3.5
Tracking Error Quality 2.1 11.2 0.7
Tracking Error Optionality 1.6 11.5 0.3
Tracking Error Coupon 2.0 12.3 0.8
Tracking Error MBS Sector 4.9 10.2 −2.1
Tracking Error MBS Volatility 7.2 11.1 0.9
Tracking Error MBS Prepayment 2.5 10.3 −0.8
Total Systematic Tracking Error 10.3

Nonsystematic Tracking Error
Issuer-specific 12.4  
Issue-specific 3.0
Total 12.7  
Total Tracking Error Return 16   

 Systematic Nonsystematic Total

Benchmark Sigma 417   4 417
Portfolio Sigma 413 13 413
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The risk exposures of the resulting passive portfolio match the
benchmark much better than the initial portfolio. Exhibit 10.17 details
the term structure risk of the passive portfolio. Compared with Exhibit
10.3, the overweight at the long end is reduced significantly. The over-
weight at the 25-year vertex has gone down from 1.45% to 0.64%, and
(perhaps more importantly) it is now offset partially by underweights at
the adjacent 20- and 30-year vertices. Exhibit 10.18 presents the sector
risk report for the passive portfolio. The underweight to Treasuries (in
contribution to duration) has been reduced from −0.77% to −0.29%
relative to the initial portfolio (Exhibit 10.4), and the largest corporate
overweight, to consumer non-cyclicals, has come down from +1.00% to
+0.24%.

EXHIBIT 10.17  Term Structure Risk Report for Passive Portfolio, 9/30/98

Cash Flows

Year Portfolio Benchmark Difference

0.00 1.33% 1.85% −0.52%
0.25 3.75   4.25   −0.50
0.50 4.05   4.25   −0.19
0.75 3.50   3.76   −0.27
1.00 8.96   7.37   1.59 
1.50 7.75   10.29     −2.54
2.00 8.30   8.09   0.21 
2.50 10.30     6.42   3.87 
3.00 5.32   5.50   −0.19
3.50 8.24   4.81   3.43 
4.00 6.56   7.19   −0.63
5.00 5.91   6.96   −1.05
6.00 3.42   4.67   −1.24
7.00 5.75   7.84   −2.10

10.00  6.99   7.37   −0.38
15.00  4.00   3.88   0.12 
20.00  2.98   3.04   −0.05
25.00  2.37   1.73   0.64 
30.00  0.47   0.68   −0.21
40.00  0.08   0.07   0.01 
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EXHIBIT 10.18  Sector Risk Report for Passive Portfolio, 9/30/98

Portfolio Benchmark Difference

Detailed
Sector

% of
Portfolio

Adj.
Dur.

Contrib. to
Adj. Dur.

% of
Portfolio

Adj.
Dur.

Contrib. to
Adj. Dur.

% of
Portfolio

Contrib. to
Adj. Dur.

Treasury
     Coupon   40.98 4.72 1.94   39.82 5.58 2.22   1.16 −0.29
     Strip     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
Agencies
     FNMA     4.12 3.40 0.14     3.56 3.44 0.12   0.56   0.02
     FHLB     0.00 0.00 0.00     1.21 2.32 0.03 −1.21 −0.03
     FHLMC     0.00 0.00 0.00     0.91 3.24 0.03 −0.91 −0.03
     REFCORP     3.50 11.22  0.39     0.83 12.18  0.10   2.68   0.29
     Other Agencies     0.00 0.00 0.00     1.31 5.58 0.07 −1.31 −0.07
Financial Institutions
     Banking     1.91 5.31 0.10     2.02 5.55 0.11 −0.11 −0.01
     Brokerage     1.35 3.52 0.05     0.81 4.14 0.03   0.53   0.01
     Financial Cos.     1.88 2.92 0.05     2.11 3.78 0.08 −0.23 −0.02
     Insurance     0.00 0.00 0.00     0.52 7.47 0.04 −0.52 −0.04
     Other     0.00 0.00 0.00     0.28 5.76 0.02 −0.28 −0.02
Industrials
     Basic     0.63 6.68 0.04     0.89 6.39 0.06 −0.26 −0.01
     Capital Goods     2.89 7.88 0.23     1.16 6.94 0.08   1.73   0.15
     Consumer Cycl.     2.01 8.37 0.17     2.28 7.10 0.16 −0.27   0.01
     Consum. Non-cycl.     2.76 12.91  0.36     1.66 6.84 0.11   1.10   0.24
     Energy     1.50 6.82 0.10     0.69 6.89 0.05   0.81   0.05
     Technology     1.55 1.58 0.02     0.42 7.39 0.03   1.13 −0.01
     Transportation     0.00 0.00 0.00     0.57 7.41 0.04 −0.57 −0.04
Utilities
     Electric     0.47 3.36 0.02     1.39 5.02 0.07 −0.93 −0.05
     Telephone     3.69 2.32 0.09     1.54 6.58 0.10   2.15 −0.02
     Natural Gas     0.80 5.53 0.04     0.49 6.50 0.03   0.31   0.01
     Water     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
Yankee
Canadians     1.45 7.87 0.11     1.06 6.67 0.07   0.38   0.04
Corporates     0.49 3.34 0.02     1.79 6.06 0.11 −1.30 −0.09
Supranational     1.00 6.76 0.07     0.38 6.33 0.02   0.62   0.04
     Sovereigns     0.00 0.00 0.00     0.66 5.95 0.04 −0.66 −0.04
     Hypothetical     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
     Cash     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
Mortgage
     Conventional 30-yr.   12.96 1.52 0.20   16.60 1.42 0.24 −3.64 −0.04
     GNMA 30-yr.     7.53 1.23 0.09     7.70 1.12 0.09 −0.17   0.01
     MBS 15-yr.     3.52 1.95 0.07     5.59 1.63 0.09 −2.07 −0.02
     Balloons     3.02 1.69 0.05     0.78 1.02 0.01   2.24   0.04
     OTM     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
European & International
     Eurobonds     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
     International     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
     Asset Backed     0.00 0.00 0.00     0.96 3.14 0.03 −0.96 −0.03
     CMO     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
     Other     0.00 0.00 0.00     0.00 0.00 0.00   0.00   0.00
Totals 100.00 4.35 100.00 4.29   0.00   0.00
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Minimization of tracking error, illustrated above, is the most basic
application of the optimizer. This is ideal for passive investors who want
their portfolios to track the benchmark as closely as possible. This
method also aids investors who hope to outperform the benchmark
mainly on the basis of security selection, without expressing views on
sector or yield curve. Given a carefully selected universe of securities
from a set of favored issuers, the optimizer can help build security picks
into a portfolio with no significant systematic exposures relative to the
benchmark.

For more active portfolios, the objective is no longer minimization
of tracking error. When minimizing tracking error, the optimizer tries to
reduce the largest differences between the portfolio and benchmark. But
what if the portfolio is meant to be long duration or overweighted in a
particular sector to express a market view? These views certainly should
not be “optimized” away. However, unintended exposures need to be
minimized, while keeping the intentional ones.

For instance, assume in the original sample portfolio that the sector
exposure is intentional but the portfolio should be neutral to the bench-
mark for all other sources of risk, especially term structure. The risk
model allows the investor to keep exposures to one or more sets of risk
factors (in this case, sector) and optimize to reduce the components of
tracking error due to all other risk factors. This is equivalent to reduc-
ing all components of tracking error but the ones to be preserved. The
model introduces a significant penalty for changing the risk profile of
the portfolio in the risk categories designated for preservation.

Exhibit 10.19 shows the transactions suggested by the optimizer in
this case.5 At first glance, the logic behind the selection of the proposed
transactions is not as clear as before. We see a sequence of fairly small
transactions, mostly trading up in coupon. Although this is one way to
change the term structure exposure of a portfolio, it is usually not the
most obvious or effective method. The reason for this lies in the very
limited choices we offered the optimizer for this illustration. As in the
example of tracking error minimization, the investable universe was
limited to securities already in the portfolio. That is, only rebalancing
trades were permitted. Because the most needed cash flows are at verti-
ces where the portfolio has no maturing securities, the only way to
increase those flows is through higher coupon payments. In a more real-
istic optimization exercise, we would include a wider range of maturity

5 Tracking error does not decrease with each transaction. This is possible because the
optimizer does not minimize the tracking error itself in this case, but rather a func-
tion that includes the tracking error due to all factors but sector, as well as a penalty
term for changing sector exposures.
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dates (and possibly a set of zero-coupon securities as well) in the invest-
able universe to give the optimizer more flexibility in adjusting portfolio
cash flows. Despite these self-imposed limitations, the optimizer suc-
ceeds in bringing down the term structure risk while leaving the sector
risk almost unchanged. Exhibit 10.20 shows the tracking error break-
down for the resulting portfolio. The term structure risk has been
reduced from 36 bp to 12 bp, while the sector risk remains almost
unchanged at 30 bp.

EXHIBIT 10.19  Sequence of Transactions Selected by Optimizer, 
Keeping Exposures to Sector, $000s
Initial Tracking Error: 52.0 bp

Transaction # 1

Sold: 2000 of COCA-COLA ENTERPRISES 6.950 2026/11/15

Bought: 2000 of NORFOLK SOUTHERN CORP. 7.800 2027/05/15

Cash Left Over: −235.19

New Tracking Error: 52.1 bp

Cost of this Transaction: 10.000

Cumulative Cost: 10.000

Transaction # 2

Sold: 2000 of COCA-COLA ENTERPRISES 6.950 2026/11/15

Bought: 2000 of NEW YORK TELEPHONE 9.375 2031/07/15

Cash Left Over: −389.36

New Tracking Error: 50.1 bp

Cost of this Transaction: 10.000

Cumulative Cost: 20.000

Transaction # 3

Sold: 10000 of U.S. TREASURY BONDS 6.250 2023/08/15

Bought: 10000 of NEW YORK TELEPHONE 9.375 2031/07/15

Cash Left Over: −468.14

New Tracking Error: 47.4 bp

Cost of this Transaction: 50.000

Cumulative Cost: 70.000

Transaction # 4

Sold: 2000 of COCA-COLA ENTERPRISES 6.950 2026/11/15

Bought: 2000 of FHLM Gold Guar. Single Fam. 7.000 2028/01/01

Cash Left Over: −373.47

New Tracking Error: 46.0 bp

Cost of this Transaction: 10.000

Cumulative Cost: 80.000

10-Dynkin/Hyman/Wu  Page 278  Thursday, August 29, 2002  9:57 AM

http://abcbourse.ir/


Multi-Factor Risk Models and Their Applications 279

EXHIBIT 10.19     (Continued)

Proxy Portfolios
How many securities does it take to replicate the Lehman Corporate Index
(containing about 4,500 bonds) to within 25 bp/year? How close could a
portfolio of $50 million invested in 10 MBS securities get to the MBS index
return? How many high-yield securities does a portfolio need to hold to get
sufficient diversification relative to the High Yield Index? How could one
define “sufficient diversification” quantitatively? Investors asking any of
these questions are looking for “index proxies”—portfolios with a small
number of securities that nevertheless closely match their target indices.

Transaction # 5
Sold: 6000 of U.S. TREASURY BONDS 6.250 2023/08/15
Bought: 6000 of GNMA I Single Fam. 7.500 2022/07/01
Cash Left Over: 272.43
New Tracking Error: 47.2 bp
Cost of this Transaction: 30.000
Cumulative Cost: 110.000

Transaction # 6
Sold: 1000 of NORFOLK SOUTHERN CORP. 7.800 2027/05/15
Bought: 1000 of U.S. TREASURY NOTES 6.125 2007/08/15
Cash Left Over: 343.44
New Tracking Error: 46.4 bp
Cost of this Transaction: 5.000
Cumulative Cost: 115.000

Transaction # 7
Sold: 2000 of NORFOLK SOUTHERN CORP. 7.800 2027/05/15
Bought: 2000 of ANHEUSER-BUSCH CO., INC. 6.750 2027/12/15
Cash Left Over: 587.60
New Tracking Error: 45.7 bp
Cost of this Transaction: 10.000
Cumulative Cost: 125.000

EXHIBIT 10.20  Summary of Tracking Error Breakdown for Sample Portfolios

Tracking Error 
Due to: 

Original
Portfolio

Swapped
Coca-Cola Passive 

Keep Sector
Exposures

Term Structure 36 37   7 12
Sector 32 32   7 30
Systematic Risk 45 46 10 39
Nonsystematic Risk 26 22 13 24
Total 52 51 16 46
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Proxies are used for two distinct purposes: passive investment and
index analysis. Both passive portfolio managers and active managers
with no particular view on the market at a given time might be inter-
ested in insights from index proxies. These proxy portfolios represent a
practical method of matching index returns while containing transac-
tion costs. In addition, the large number of securities in an index can
pose difficulties in the application of computationally intensive quanti-
tative techniques. A portfolio can be analyzed against an index proxy of
a few securities using methods that would be impractical to apply to an
index of several thousand securities. As long as the proxy matches the
index along relevant risk dimensions, this approach can speed up many
forms of analysis with only a small sacrifice in accuracy.

There are several approaches to the creation of index proxies. Quanti-
tative techniques include stratified sampling or cell-matching, tracking
error minimization, and matching index scenario results. (With limitations,
replication of index returns can also be achieved using securities outside of
indices, such as Treasury futures contracts.6 An alternative way of getting
index returns is entering into an index swap or buying an appropriately
structured note.) Regardless of the means used to build a proxy portfolio,
the risk model can measure how well the proxy is likely to track the index.

In a simple cell-matching technique, a benchmark is profiled on an
arbitrary grid that reflects the risk dimensions along which a portfolio
manager’s allocation decisions are made. The index contribution to each
cell is then matched by one or more representative liquid securities.
Duration (and convexity) of each cell within the benchmark can be tar-
geted when purchasing securities to fill the cell. We have used this tech-
nique to produce proxy portfolios of 20-25 MBS passthroughs to track
the Lehman Brothers MBS Index. These portfolios have tracked the
index of about 600 MBS generics to within 3 bp per month.7

To create or fine-tune a proxy portfolio using the risk model, we can
start by selecting a seed portfolio and an investable universe. The tracking
error minimization process described above then recommends a sequence
of transactions. As more bonds are added to the portfolio, risk decreases.
The level of tracking achieved by a proxy portfolio depends on the num-
ber of bonds included. Exhibit 10.21a shows the annualized tracking
errors achieved using this procedure, as a function of the number of
bonds, in a proxy for the Lehman Brothers Corporate Bond Index. At
first, adding more securities to the portfolio reduces tracking error rap-

6 Replicating Index Returns with Treasury Futures, Lehman Brothers, November
1997.
7 Replicating the MBS Index Risk and Return Characteristics Using Proxy Portfoli-
os, Lehman Brothers, March 1997.
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idly. But as the number of bonds grows, the improvement levels off. The
breakdown between systematic and nonsystematic risk explains this phe-
nomenon. As securities are added to the portfolio, systematic risk is
reduced rapidly. Once the corporate portfolio is sufficiently diverse to
match index exposures to all industries and credit qualities, nonsystem-
atic risk dominates, and the rate of tracking error reduction decreases.

Exhibit 10.21b illustrates the same process applied to the Lehman
Brothers High-Yield Index. A similar pattern is observed: Tracking error
declines steeply at first as securities are added; tracking error reduction
falls with later portfolio additions. The overall risk of the high-yield
proxy remains above the investment-grade proxy. This reflects the effect
of quality on our estimate of nonsystematic risk. Similar exposures to
lower-rated securities carry more risk. As a result, a proxy of about 30
investment-grade corporates tracks the Corporate Index within about
50 bp/year. Achieving the same tracking error for the High-Yield Index
requires a proxy of 50 high-yield bonds. 

To demonstrate that proxy portfolios track their underlying indices,
we analyze the performance of three proxies over time. The described
methodology was used to create a corporate proxy portfolio of about
30 securities from a universe of liquid corporate bonds (minimum $350
million outstanding). Exhibit 10.22 shows the tracking errors projected
at the start of each month from January 1997 through September 1998,
together with the performance achieved by portfolio and benchmark.
The return difference is sometimes larger than the tracking error. (Note
that the monthly return difference must be compared to the monthly
tracking error, which is obtained by scaling down the annualized track-
ing error by .) This is to be expected. Tracking error does not con-
stitute an upper bound of return difference, but rather one standard
deviation. If the return difference is normally distributed with the stan-
dard deviation given by the tracking error, then the return difference
should be expected to be within ±1 tracking error about 68% of the
time, and within ±2 tracking errors about 95% of the time. For the cor-
porate proxy shown here, the standard deviation of the return differ-
ence over the observed time period is 13 bp, almost identical to the
projected monthly tracking error. Furthermore, the result is within ±1
tracking error in 17 months out of 24, or about 71% of the time.

Exhibit 10.23 summarizes the performance of our Treasury, corpo-
rate, and mortgage index proxies. The MBS Index was tracked with a
proxy portfolio of 20–25 generics. The Treasury index was matched using
a simple cell-matching scheme. The index was divided into three maturity
cells, and two highly liquid bonds were selected from each cell to match
the index duration. For each of the three proxy portfolios, the observed
standard deviation of return difference is less than the tracking error. The

12
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corporate portfolio tracks as predicted by the risk model, while the Trea-
sury and mortgage proxies track better than predicted. The corporate
index proxy was generated by minimizing the tracking error relative to
the Corporate Index using 50–60 securities. Being much less diversified
than the index of about 4,700 securities, the corporate proxy is most
exposed to nonsystematic risk. In the difficult month of September 1998,
when liquidity in the credit markets was severely stemmed, this resulted
in a realized return difference three times the projected tracking error.

EXHIBIT 10.21  Corporate Proxy—Tracking Error as a Function of Number of 
Bonds (Effect of Diversification)
a. Proxy for Corporate Bond Index

b. Proxy for High-Yield Index
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EXHIBIT 10.22  Corporate Proxy Portfolio: Comparison of Achieved Results with 
Projected Tracking Errors

Annual
Tracking
Error (bp)

Monthly
Tracking
Error (bp)

Return (%/mo.) Return
Difference
(bp/Mo.)

Ret. Diff./
Monthly

Tracking ErrorDate Proxy Index

Jan-97 48 14 0.15 0.14 0 0.03
Feb-97 48 14 0.37 0.42 −5 −0.34
Mar-97 48 14 −1.60 −1.56 −4 −0.30
Apr-97 47 14 1.60 1.52 8 0.60
May-97 48 14 1.14 1.13 1 0.04
Jun-97 48 14 1.42 1.42 0 0.03
Jul-97 47 14 3.62 3.66 −4 −0.27
Aug-97 48 14 −1.48 −1.48  0 −0.01
Sep-97 47 14 1.65 1.75 −10 −0.72
Oct-97 48 14 1.43 1.27 16  1.13
Nov-97 49 14 0.60 0.57 4 0.25
Dec-97 49 14 1.33 1.06 27  1.88
Jan-98 49 14 1.36 1.19 17  1.19
Feb-98 46 13 0.05 −0.03  8 0.59
Mar-98 46 13 0.39 0.37 2 0.16
Apr-98 45 13 0.75 0.63 12  0.93
May-98 44 13 1.22 1.19 3 0.24
Jun-98 45 13 0.79 0.74 6 0.42
Jul-98 45 13 −0.18 −0.10 −8 −0.63
Aug-98 44 13 0.76 0.47 29  2.26
Sep-98 44 13 3.62 3.24 38  2.99
Oct-98 46 13 −1.40 −1.54  15  1.11
Nov-98 45 13 2.04 1.88 16  1.20
Dec-98 47 14 0.17 0.29 −12 −0.87
Std. Dev.: 13  

Number Percentage

Observations within +/− 1 × tracking error 17 71%
Observations within +/− 2 × tracking error 22 92%
Total number of observations 24
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A proxy portfolio for the Lehman Brothers Aggregate Index can be
constructed by building proxies to track each of its major components
and combining them with the proper weightings. This exercise clearly
illustrates the benefits of diversification. The aggregate proxy in Exhibit
10.24 is obtained by combining the government, corporate, and mort-
gage proxies shown in the same exhibit. The tracking error achieved by
the combination is smaller than that of any of its constituents. This is
because the risks of the proxy portfolios are largely independent.

EXHIBIT 10.23  Summary of Historical Results of
Proxy Portfolios for Treasury, Corporate, and MBS Indices, in bp per Month

Treasury Corporate MBS

Tracking
Error

Return
Difference

Tracking
Error

Return
Difference

Tracking
Error

Return
Difference

Jan-97 5.5 −1.7 13.9   0.4 4.3   0.8
Feb-97 5.2 −0.6 13.9 −4.7 4.3 −0.3
Mar-97 5.5 −1.8 13.9 −4.2 4.0   2.9
Apr-97 5.5   1.7 13.6   8.2 4.3 −3.3
May-97 5.8 −0.3 13.9   0.6 4.0   1.6
Jun-97 6.6   3.5 13.9   0.4 4.0 −0.5
Jul-97 6.6   3.8 13.6 −3.7 4.0 −2.5
Aug-97 6.9 −3.8 13.9 −0.1 4.3   1.5
Sep-97 6.4   1.5 13.6 −9.8 4.3 −1.2
Oct-97 6.4   3.2 13.9 15.7 4.0 −0.6
Nov-97 6.1 −2.3 14.1   3.5 4.0   0.8
Dec-97 6.6   6.0 14.1 26.6 4.0 −2.4
Jan-98 6.6   1.0 14.1 16.9 4.3   1.8
Feb-98 6.6 −1.8 13.3   7.8 4.9   2.2
Mar-98 6.6   1.8 13.3   2.1 4.0 −1.9
Apr-98 6.6 −1.8 13.0 12.1 4.6 −0.9
May-98 6.6   3.8 12.7   3.1 4.6 −0.3
Jun-98 7.8 −1.4 13.0   5.5 4.9   0.4
Jul-98 7.5 −1.7 13.0 −8.2 4.3 −1.3
Aug-98 7.5 −0.6 12.7 28.7 4.3 −3.4
Sep-98 8.1 −6.1 12.7 38.0 4.0 −1.7
Oct-98 7.8   5.4 13.3 14.7 4.0   3.4
Nov-98 7.8 −4.9 13.0 15.6 4.6 −1.8
Dec-98 6.1 −2.7 13.6 −11.8  4.3 −1.6

Mean 6.6   0.0 13.5   6.6 4.3 −0.3
Std. Dev.   3.2 12.5   1.9
Min −6.1 −11.8 −3.4
Max   6.0 38.0   3.4
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When using tracking error minimization to design proxy portfolios,
the choice of the “seed” portfolio and the investable universe should be
considered carefully. The seed portfolio is the initial portfolio presented to
the optimizer. Due to the nature of the gradient search procedure, the path
followed by the optimizer will depend on the initial portfolio. The seed
portfolio will produce the best results when it is closest in nature to the
benchmark. At the very least, asset managers should choose a seed portfo-
lio with duration near that of the benchmark. The investable universe, or
bond swap pool, should be wide enough to offer the optimizer the free-
dom to match all risk factors. But if the intention is to actually purchase
the proxy, the investable universe should be limited to liquid securities.

These methods for building proxy portfolios are not mutually exclu-
sive, but can be used in conjunction with each other. A portfolio man-
ager who seeks to build an investment portfolio that is largely passive to
the index can use a combination of security picking, cell matching, and
tracking error minimization. By dividing the market into cells and
choosing one or more preferred securities in each cell, the manager can
create an investable universe of candidate bonds in which all sectors and
credit qualities are represented. The tracking error minimization proce-
dure can then match index exposures to all risk factors while choosing
only securities that the manager would like to purchase. 

Benchmark Selection: Broad versus Narrow Indices
Lehman Brothers’ development has been guided by the principle that
benchmarks should be broad-based, market-weighted averages. This leads
to indices that give a stable, objective, and comprehensive representation of
the selected market. On occasion, some investors have expressed a prefer-
ence for indices composed of fewer securities. Among the rationales, trans-
parency of pricing associated with smaller indices and a presumption that
smaller indices are easier to replicate have been most commonly cited.

We have shown that it is possible to construct proxy portfolios with
small numbers of securities that adequately track broad-based bench-
marks. Furthermore, broad benchmarks offer more opportunities for

EXHIBIT 10.24  Effect of Diversification—Tracking Error versus Treasury, 
Corporate, MBS, and Aggregate

Index
No. of Bonds

in Proxy
No. of Bonds

in Index
Tracking Error 

(bp/Year)

Treasury     6    165 13
Government   39 1,843 11
Corporate   51 4,380 26
Mortgage   19    606 15
Aggregate 109 6,928 10
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outperformance by low-risk security selection strategies.8 When a
benchmark is too narrow, each security represents a significant percent-
age, and a risk-conscious manager might be forced to own nearly every
issue in the benchmark. Ideally, a benchmark should be diverse enough
to reduce its nonsystematic risk close to zero. As seen in Exhibit 10.2,
the nonsystematic part of sigma for the Aggregate Index is only 4 bp.

Defining Spread and Curve Scenarios Consistent with History
The tracking error produced by the risk model is an average expected per-
formance deviation due to possible changes in all risk factors. In addition
to this method of measuring risk, many investors perform “stress tests” on
their portfolios. Here scenario analysis is used to project performance
under various market conditions. The scenarios considered typically
include a standard set of movements in the yield curve (parallel shift, steep-
ening, and flattening) and possibly more specific scenarios based on market
views. Often, though, practitioners neglect to consider spread changes, pos-
sibly due to the difficulties in generating reasonable scenarios of this type.
(Is it realistic to assume that industrial spreads will tighten by 10 bp while
utilities remain unchanged?) One way to generate spread scenarios consis-
tent with the historical experience of spreads in the marketplace is to utilize
the statistical information contained within the risk model.

For each sector/quality cell of the corporate bond market shown in
Exhibit 10.25, we create a corporate sub-index confined to a particular
cell and use it as a portfolio. We then create a hypothetical Treasury
bond for each security in this sub-index. Other than being labeled as
belonging to the Treasury sector and having Aaa quality, these hypothet-
ical bonds are identical to their corresponding real corporate bonds. We
run a risk model comparison between the portfolio of corporate bonds
versus their hypothetical Treasury counterparts as the benchmark. This
artificially forces the portfolio and benchmark sensitivity to term struc-
ture, optionality and any other risks to be neutralized, leaving only sec-
tor and quality risk. Exhibit 10.25 shows the tracking error components
due to sector and quality, as well as their combined effect. Dividing these
tracking errors (standard deviations of return differences) by the average
durations of the cells produces approximations for the standard devia-
tion of spread changes. The standard deviation of the overall spread
change, converted to a monthly number, can form the basis for a set of
spread change scenarios. For instance, a scenario of “spreads widen by
one standard deviation” would imply a widening of 6 bp for Aaa utili-
ties, and 13 bp for Baa financials. This is a more realistic scenario than
an across-the-board parallel shift, such as “corporates widen by 10 bp.”

8 Value of Security Selection versus Asset Allocation in Credit Markets: A “Perfect
Foresight” Study, Lehman Brothers, March 1999.

10-Dynkin/Hyman/Wu  Page 286  Thursday, August 29, 2002  9:57 AM

http://abcbourse.ir/


Multi-Factor Risk Models and Their Applications 287

Hedging
Since the covariance matrix used by the risk model is based on monthly
observations of security returns, the model cannot compute daily
hedges. However, it can help create long-term positions that over time
perform better than a naïve hedge. This point is illustrated by a histori-
cal simulation of a simple barbell versus bullet strategy in Exhibit
10.26, in which a combination of the 2- and 10-year on-the-run Trea-
suries is used to hedge the on-the-run 5-year. We compare two methods
of calculating the relative weights of the two bonds in the hedge. In the
first method, the hedge is rebalanced at the start of each month to match
the duration of the 5-year Treasury. In the second, the model is engaged
on a monthly basis to minimize the tracking error between the portfolio
of 2- and 10-year securities and the 5-year benchmark. As shown in

EXHIBIT 10.25  Using the Risk Model to Define Spread Scenarios Consistent with 
History

Dur.
Annual Tracking

Error (%)
Spread Volatility

(bp)

(Years) Sector Quality Both Sector Quality Both Monthly

U.S. Agencies Aaa 4.54 0.26 0.00 0.26   6   0   6   2
     Industrials Aaa 8.42 2.36 0.00 2.36 28   0 28   8

Aa 6.37 1.72 0.57 2.03 27   9 32   9
A 6.97 1.89 0.82 2.43 27 12 35 10
Baa 6.80 1.87 1.36 2.96 27 20 43 13

     Utilities Aaa 7.34 1.62 0.13 1.65 22   2 22   6
Aa 5.67 1.21 0.45 1.39 21   8 25   7
A 6.03 1.33 0.63 1.67 22 10 28   8
Baa 5.68 1.36 1.01 2.07 24 18 36 11

     Financials Aaa 4.89 1.41 0.00 1.41 29   0 29   8
Aa 4.29 1.31 0.34 1.50 30   8 35 10
A 4.49 1.31 0.49 1.65 29 11 37 11
Baa 4.86 1.58 0.86 2.14 32 18 44 13

     Banking Aa 4.87 1.23 0.44 1.40 25   9 29   8
A 5.68 1.43 0.62 1.72 25 11 30   9
Baa 5.06 1.27 1.13 2.11 25 22 42 12

     Yankees Aaa 6.16 1.23 0.06 1.26 20   1 20   6
Aa 5.45 1.05 0.49 1.27 19   9 23   7
A 7.03 1.62 0.89 2.17 23 13 31   9
Baa 6.17 1.51 1.36 2.60 24 22 42 12
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Exhibit 10.26, the risk model hedge tracks the performance of the 5-
year bullet more closely than the duration hedge, with an observed
tracking error of 19 bp/month compared with 20 bp/month for the
duration hedge.

The duration of the 2- and 10-year portfolio built with the minimal
tracking error hedging technique is consistently longer than that of the
5-year. Over the study period (1/94–2/99), the duration difference aver-
aged 0.1 years. This duration extension proved very stable (standard
deviation of 0.02) and is rooted in the shape of the historically most
likely movement of the yield curve. It can be shown that the shape of the
first principal component of yield curve movements is not quite a paral-
lel shift.9 Rather, the 2-year will typically experience less yield change
then the 5- or 10-year. To the extent that the 5- and 10-year securities
experience historically similar yield changes, a barbell hedge could ben-
efit from an underweighting of the 2-year and an overweighting of the
10-year security. Over the 62 months analyzed in this study, the risk-
based hedge performed closer to the 5-year than the duration-based
hedge 59% of the time.

A similar study conducted using a 2- and 30-year barbell versus a 5-
year bullet over the same study period (1/94–2/99) produced slightly
more convincing evidence. Here, the risk-based hedge tracked better
than the duration hedge by about 3 bp/month (33 bp/month tracking
error versus 36 bp/month) and improved upon the duration hedge in
60% of the months studied. Interestingly, the duration extension in the
hedge was even more pronounced in this case, with the risk-based hedge
longer than the 5-year by an average of 0.36 years.

9 Managing the Yield Curve with Principal Component Analysis, Lehman Brothers,
November 1998.

EXHIBIT 10.26  Historical Performance of a Two-Security Barbell versus the 5-Year 
On-the-Run Treasury Bullet; Duration-Based Hedge versus a Tracking Error-Based 
Hedge, January 1994–February 1999

Difference % of Months

Duration Hedge Tracking Error Hedge Tracking

Return Duration Return Duration Improved

2–10 vs. 5 Mean 0.03 0.00 0.03 0.10 59%
Std. Dev. 0.20 0.00 0.19 0.02

2–30 vs. 5 Mean 0.04 0.00 0.04 0.36 62%
Std. Dev. 0.36 0.00 0.33 0.03
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EXHIBIT 10.27  Projected Distribution of Total Return Difference (in bp/Year) 
between Portfolio and Benchmark, Based on Yield Advantage of 16 bp and 
Tracking Error of 52 bp, Assuming Normal Distribution

Estimating the Probability of Portfolio Underperformance
What is the probability that a portfolio will underperform the bench-
mark by 25 basis points or more over the coming year? To answer such
questions, we need to make some assumptions about the distribution of
the performance difference. We assume this difference to be distributed
normally, with the standard deviation given by the tracking error calcu-
lated by the risk model. However, the risk model does not provide an
estimate of the mean outperformance. Such an estimate may be
obtained by a horizon total return analysis under an expected scenario
(e.g., yield curve and spreads unchanged), or by simply using the yield
differential as a rough guide. In the example of Exhibit 10.1, the portfo-
lio yield exceeds that of the benchmark by 16 bp, and the tracking error
is calculated as 52 bp. Exhibit 10.27 depicts the normal distribution
with a mean of 16 bp and a standard deviation of 52 bp. The area of the
shaded region, which represents the probability of underperforming by
25 bp or more, may be calculated as

N[(−25) − 16)/52] = 0.215 = 21.5%

where N(x) is the standard normal cumulative distribution function. As
the true distribution of the return difference may not be normal, this
approach must be used with care. It may not be accurate in estimating
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the probability of rare events such as the “great spread sector crash” in
August 1998. For example, this calculation would assign a probability
of only 0.0033 or 0.33% to an underperformance of −125 bp or worse.
Admittedly, if the tails of the true distribution are slightly different than
normal, the true probability could be much higher.

Measuring Sources of Market Risk
As illustrated in Exhibit 10.2, the risk model reports the projected stan-
dard deviation of the absolute returns (sigma) of the portfolio and the
benchmark as well as that of the return difference (tracking error).
However, the detailed breakdown of risk due to different groups of risk
factors is reported only for the tracking error. To obtain such a break-
down of the absolute risk (sigma) of a given portfolio or index, we can
measure the risk of our portfolio against a riskless asset, such as a cash
security. In this case, the relative risk is equal to the absolute risk of the
portfolio, and the tracking error breakdown report can be interpreted as
a breakdown of market sigma.

Exhibit 10.28 illustrates the use of this technique to analyze the
sources of market risk in four Lehman Brothers indices: Treasury,
(investment grade) Corporate, High-Yield Corporate, and MBS. The
results provide a clear picture of the role played by the different sources
of risk in each of these markets. In the Treasury Index, term structure
risk represents the only significant form of risk. In the Corporate Index,
sector and quality risk add to term structure risk, but the effect of a neg-
ative correlation between spread risk and term structure risk is clearly
visible. The overall risk of the Corporate Index (5.47%) is less than the
term structure component alone (5.81%). This reflects the fact that when
Treasury interest rates undergo large shocks, corporate yields often lag,
moving more slowly in the same direction. The High-Yield Index shows
a marked increase in quality risk and in nonsystematic risk relative to the
Corporate Index. But, the negative correlation between term structure
risk and quality risk is large as well, and the overall risk (4.76%) is less
than the term structure risk (4.98%) by even more than it is for corpo-
rates. The effect of negative correlations among risk factors is also very
strong in the MBS Index, where the MBS-specific risk factors bring the
term structure risk of 3.25% down to an overall risk of 2.69%.

MODELING THE RISK OF NON-INDEX SECURITIES

The risk model calculates risk factor exposures for every security in the
portfolio and the benchmark. As the model supports all securities in the
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Lehman Brothers Aggregate Index, the risk of the benchmark usually is
fully modeled. Portfolios, however, often contain securities (and even
asset classes) not found in the Aggregate Index. Our portfolio analytics
platform has several features designed to represent out-of-index portfo-
lio holdings. In addition, modeling techniques can be used to synthesize
the risk characteristics of non-index securities through a combination of
two or more securities.

Bonds
The analytics platform supports the modeling of all types of government
and corporate bonds. User-defined bonds may contain calls, puts, sink-
ing fund provisions, step-up coupon schedules, inflation linkage, and
more. Perpetual-coupon bonds (and preferred stock) can be modeled as
bonds with very distant maturity dates. Floating-rate bonds are repre-
sented by a short exposure to term structure risk (as though the bond
would mature on the next coupon reset date) and a long exposure to
spread risk (the relevant spread factors are loaded by the bond’s spread
duration, which is based on the full set of projected cash flows through
maturity).

EXHIBIT 10.28  Risk Model Breakdown of Market Risk (Sigma) to Different 
Categories of Risk Factors (Isolated Mode) for Four Lehman Brothers Indices, as of 
9/30/98, in Percent per Year

Index: Treasury Corporate High-Yield MBS

Duration (years) 5.58 6.08 4.74 1.37
Convexity 0.69 0.68 0.20 −2.19
Term Structure Risk 5.25 5.81 4.98 3.25
Non-term Structure Risk 0.17 2.14 5.20 2.28
Risk Due to:
     Corp. Sector 0.00 1.50 1.21 0.00
     Quality 0.00 0.84 4.67 0.00
     Optionality 0.01 0.08 0.15 0.00
     Coupon 0.17 0.01 0.19 0.00
     MBS Sector 0.00 0.00 0.00 1.15
     MBS Volatility 0.00 0.00 0.00 1.27
     MBS Prepayment 0.00 0.00 0.00 0.73
Total Systematic Risk 5.26 5.47 4.75 2.69
Nonsystematic Risk 0.04 0.08 0.17 0.09
Total Risk (std. dev. of annual return) 5.26 5.47 4.76 2.69
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Mortgage Passthroughs
The Lehman Brothers MBS Index is composed of several hundred
“generic” securities. Each generic is created by combining all outstand-
ing pools of a given program, passthrough coupon, and origination year
(e.g., FNMA conventional 30-year 8.0% of 1993).10 The index database
contains over 3000 such generics, offering comprehensive coverage of
the agency passthrough market, even though only about 600 meet the
liquidity requirements for index inclusion. In addition to this database
of MBS generics and their risk factor loadings, the analytics platform
contains a lookup table of individual pools. This allows portfolios that
contain mortgage pools to be bulk loaded based on either the pool
CUSIP or the agency and pool number. For portfolio analytics, the char-
acteristics of the appropriate generic are used as a proxy for the pool.
This can lead to some inaccuracy for esoteric pools that differ consider-
ably from the generic to which they are mapped, but adequately repre-
sents most mortgage portfolios in our experience.

CMOs
CMOs are not included in the Lehman Brothers MBS Index because
their collateral has already been included as passthroughs. At present,
the portfolio analytics recognize and process structured securities as
individual tranches, but do not possess deal-level logic to project
tranche cash flows under different assumptions. Thus, each tranche is
represented in the system by a fixed set of cash flows, projected using
the Lehman Brothers prepayment model for the zero-volatility interest
rate path calibrated to the forward curve. Risk factor loadings for these
securities are calculated as a hybrid between the characteristics of the
tranche and the underlying collateral. Term structure risk is assumed to
follow the cash flows of the tranche. 

For PAC securities with less than 3 years to maturity (WAM), the
model assigns no mortgage sector risk. For PACs with WAM greater
than 10 years and for other types of tranches, the mortgage sector risk is
assumed to be equal to that of a position in the underlying collateral
with the same dollar duration. For PACs with WAM between 3 and 10
years, we use a prorated portion of the mortgage risk exposure of the
collateral. This set of assumptions well represents tranches with stable
cash flows, such as PACs trading within their bands. Tranches with
extremely volatile cash flows, such as IOs and inverse floaters, cannot be
represented adequately in the current system. The mechanism of defin-

10 For a discussion of MBS Index composition and the relationship between pools
and generics, see the Lehman Brothers report, “MBS Index Returns: A Detailed
Look,” August 1998.
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ing a “cash flow bond” (with an arbitrary fixed cash flow stream), with
or without the additional treatment of mortgage risk, can be used to
model many kinds of structured transactions.

Futures
A bond futures contract may be represented as a combination of a long
position in the Treasury security that is the cheapest-to-deliver issue
(CDI) and a short position in a cash instrument. To match the dollar
duration of a Treasury futures position with a notional market value of
Nf, the size of the position Nt in the CDI Treasury bond should satisfy

(Pt + At)NtDt = Pf Nf Df

where Df is the option-adjusted duration of the futures contract. The
negative holding Nc in the cash instrument has to offset the market
value of the CDI:

(Pc + Ac)Nc + (Pt + At)Nt = 0

If the cash instrument is priced at par and has no accrued interest, the
amount needed is simply

Nc = −(Pt + At)Nt

If the option-adjusted duration of the futures contract is not known, one
could approximate Nt for a given CDI using the conversion factor CFt:

Nt = Nf /CFt

The disadvantage of a representation using a single CDI is that the
notional values Nt and Nc need to be regularly maintained in order to
properly reflect the risk of an unchanged position in futures. As yields
change, the resulting changes in the delivery probabilities of different
bonds will change the futures duration. A failure to update the portfolio
frequently enough can lead to a discontinuity, especially around a
switch in the CDI. A more sophisticated synthetic representation of a
futures contract may involve more than one deliverable instrument
weighted by the probability of delivery.

Index Swaps
The analytics platform provides a mechanism for including index swaps
in portfolios. An individual security can be defined as paying the total
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return of a particular index, and a specific face amount of such a secu-
rity can be included in a portfolio, corresponding to the notional value
of the swap. These special securities have been created for all widely
used Lehman Indices and are stored in the standard security database.
Swaps written on other custom indices or portfolios can be modeled in a
similar fashion. These capabilities, in conjunction with the dollar-based
risk reporting described below, allow a comprehensive risk analysis of a
portfolio of index swaps versus a hedge portfolio.

SUMMARY

In this chapter, we described a risk model for dollar-denominated govern-
ment, corporate, and mortgage-backed securities. The model quantifies
expected deviation in performance (“tracking error”) between a portfolio
of fixed-income securities and an index representing the market, such as
the Lehman Brothers Aggregate, Corporate, or High-Yield Index.

The forecast of the return deviation is based on specific mismatches
between the sensitivities of the portfolio and the benchmark to major
market forces (“risk factors”) that drive security returns. The model
uses historical variances and correlations of the risk factors to translate
the structural differences of the portfolio and the index into an expected
tracking error. The model quantifies not only this systematic market
risk, but security-specific (nonsystematic) risk as well.

Using an illustrative portfolio, we demonstrated the implementation
of the model. We showed how each component of tracking error can be
traced back to the corresponding difference between the portfolio and
benchmark risk exposures. We described the methodology for the mini-
mization of tracking error and discussed a variety of portfolio manage-
ment applications.
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any areas of modern portfolio and risk management are based on
portfolio managers’ view on the way the U.S. yield curve will evolve

in the future. These predictions are often formulated as hypothetical
shocks to the spot curve that portfolio managers expect to occur over the
specified horizon. Via key rate durations as defined by Thomas Ho1 or as

1 T.S.Y. Ho, “Key Rate Durations: Measures of Interest Rate Risks,” Journal of
Fixed Income (September 1992), pp. 29–44

M

* The authors would like to thank Yury Geyman, Lawrence Polhman, Ehud Ronn,
Michael Salm, Irwin Sheer, Pavan Wadhwa, and Adam Wizon for their helpful com-
ments and feedback.
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implied by principal component durations,2 these shocks can be used to
assess the impact of implicit duration and yield curve bets on a portfolio’s
return. Other common uses of hypothetical interest rate shocks include
various what-if analyses and stress tests, numerous [duration] measures
of portfolios’ sensitivity to the slope of the yield curve, and so forth.

The human mind can imagine all sorts of unusual interest rate
shocks, and considerable time and resources may be spent on investigat-
ing the sensitivity of portfolios to these interest rate shocks without
questioning their historical plausibility. Our goal in this chapter is to
define what historical plausibility is and how to measure it quantita-
tively. In order to achieve that, we will employ the approaches suggested
by principal component analysis. We will introduce the framework
which derives statistical distributions and measures historical plausibil-
ity of hypothetical interest rate shocks, thus providing historical validity
to the corresponding yield curve bets.

We start with a brief overview of the principal component analysis
and then utilize its methods to directly compute the probabilistic distri-
bution of hypothetical interest rate shocks. The same section also intro-
duces the notions of magnitude plausibility and explanatory power of
interest rate shocks. Then we take the analysis one step further and
introduce the notion of shape plausibility. We conclude by establishing a
relationship between the shape of the first principal component and the
term structure of volatility and verify the obtained results on the histori-
cal steepeners and flatteners of U.S. Treasury spot and on-the-run curves.

PROBABILISTIC DISTRIBUTION OF
HYPOTHETICAL INTEREST RATE SHOCKS

The U.S. Treasury spot curve is continuous. This fact complicates the
analysis and prediction of spot curve movements, especially using statis-
tical methods. Therefore, practitioners usually discretize the spot curve,
presenting its movements as changes of key rates—selected points on the
spot curve.3 Changes in spot key rates are assumed to be random vari-
ables which follow a multivariate normal distribution with zero mean
and the covariance matrix computed from the historical data. There exist
different ways to estimate the parameters of the distribution of key rates:
equally-weighted, exponentially-weighted, fractional exponentially-

2 B.W. Golub and L.M. Tilman, “Measuring Yield Curve Risk Using Principal Com-
ponent Analysis, Value-at-Risk, and Key Rate Durations,” Journal of Portfolio Man-
agement (Summer 1997).
3 See Ho, “Key Rate Durations: Measures of Interest Rate Risks.”
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weighted, and so on. Although extensive research is being conducted on
the connection between the appropriate estimation procedures and dif-
ferent styles of money management, this issue is beyond the scope of this
chapter. Ideas presented below are invariant over the methodology used
to create the covariance matrix (

 

ℑ) of key rate changes. We assume that
the covariance matrix 

 

ℑ is given.
Principal component analysis is a statistical procedure which signifi-

cantly simplifies the analysis of the covariance structure of complex sys-
tems such as interest rate movements. Instead of key rates, it creates a
new set of random variables called principal components. The latter are
the special linear combinations of key rates designed to explain the vari-
ability of the system as parsimoniously as possible. The output of the
principal component analysis of the RiskMetricsTM monthly dataset is
presented in Exhibit 11.1.

The data in Exhibit 11.1 can be interpreted as follows: Over 92% of
the historical interest rate shocks are “explained” by the first principal
component, over 97% by the first two, and over 98% by the first three.
Also note that the “humped” shape of the first principal component is
similar to that of the term structure of volatility of changes in spot rates.
Later in this chapter we will demonstrate that this is a direct implication
of the high correlation between U.S. spot key rates.4

Since key rates and principal components are random variables, any
hypothetical (and, for that matter, historical) interest rate shock is a par-
ticular realization of these variables. We will use the subscripts “KR”
and “PC” to indicate whether we are referring to a key rate or principal
component representation of interest rate shocks. For instance,

(1)

is an interest rate shock formulated in terms of changes in key rates. As
mentioned earlier, our goal in this chapter is to analyze the shape and
magnitude plausibility of hypothetical interest rate shocks and derive
statistical distribution of interest rate shocks of a given shape. We start
with the following definition.

Let

(2)

4 For a detailed discussion of principal components and their use in portfolio and risk
management, see Golub and Tilman, “Measuring Yield Curve Risk Using Principal
Component Analysis, Value-at-Risk, and Key Rate Durations.”

X x1 … xn, ,( )KR
T=

X x1 … xn, ,( )KR
T=
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300 MODELING FACTOR RISK

EXHIBIT 11.2  Interest Rate Shocks of the Same Shape

and

be spot curve shocks represented as vectors of key rate changes. We will
say that  and  have the same shape if they differ only by a factor, as in,

where c is a real number. (See Exhibit 11.2.)
As this section will show, it turns out that all interest rate shocks of a

given shape correspond to the realizations of an underlying standard nor-
mal random variable. Once we know that, we can talk about the proba-
bility associated with a given shock (i.e., given realization). For instance,
if a given interest rate shock corresponds to a three standard deviation
realization of this underlying standard normal random variable, we will
conclude that it is improbable. While deriving the probabilistic distribu-
tion of hypothetical interest rate shocks, we will utilize approaches used
while constructing principal components. Namely, we will start with the
discussion of how to compute one standard deviation principal compo-
nent shocks used in a variety of instances including principal component

Y y1 … yn, ,( )KR
T=

X Y

y1 … yn, ,( )T c x1× … c xn×, ,( )T=
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Measuring the Plausibility of Hypothetical Interest Rate Shocks 301

durations. Relationships discussed below apply to random variables and
their realizations alike.

Let

be a spot curve shock formulated in terms of changes in key rates. Let 

be a representation of the same interest rate shock  corresponding to
the coordinate system of principal components (  and  are the par-
ticular realizations of key rates and principal components respectively).
Then the relationship between the two representations of the same vec-
tor  is given by

(3)

where  is a matrix whose rows are principal component
coefficients. They are the unit vectors of the form

If  are [random] changes in key rates, then the principal components
are defined as the following linear combinations

of key rate changes. From the linear algebra viewpoint, the matrix Ω
allows us to translate the representation of an interest rate shock in one
coordinate system (key rates) into another (principal components). The
matrix Ω is orthogonal by construction, for example, Ω−1 = ΩT. There-
fore, we can rewrite equation (1) as follows:

(4)

X x1 … xn, ,( )KR
T=

X p1 … pn, ,( )PC
T=

X
xi pi

X

p1

…
pn

pc1 1, … pc1 n,
… … …

pcn 1, … pcn n,

x1

…
xn

×=

Ω pci j,{ }=

pci 1, … pci n,

Ki

pci 1, K1× … pci n, Kn×+ +

x1

…
xn

pc1 1, … pcn 1,
… … …

pc1 n, … pcn n,

p1

…
pn

×=
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302 MODELING FACTOR RISK

or simply

(5)

Equation (3) allows us to interpret an arbitrary interest rate shock  as
a sum of principal component coefficients which are multiplied by a
realization of the appropriate principal component.

For example, consider a one standard deviation shock correspond-
ing to the first principal component (PC_1). The realization of such an
event in terms of principal components is given by

where  is the one standard deviation of PC_1. In terms of key rate
changes, however, via equation (3) this shock has the following familiar
representation

The splined shapes of the first three principal components are presented
in Exhibit 11.3.

Principal components constitute an orthogonal basis PC in the
space of spot curve movements. By definition, the i-th principal compo-
nent is obtained from the covariance matrix ℑ of key rate changes via
the following optimization problem:

 ■ Compute the remaining variability in the system not explained by the
first i − 1 principal components;

 ■ Find a linear combination of key rates which explains as much of the
remaining variability as possible;

 ■ The i-th principal component should be orthogonal to all the previ-
ously selected i − 1 principal components. 

Clearly, in an n-dimensional linear space of spot curve movements, there
exist orthogonal bases other than the one consisting of principal compo-
nents. Surprisingly, this fact will help us derive the distribution of inter-
est rate shocks of a given shape.

x1

…
xn

pci 1,
…

pci n,

pi×
i 1=

n

∑=

X

λ1 0 … 0, , ,( )PC
T

λ1

λ1 pc× 1 1, … λ1 pc× 1 n,, ,( )KR
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EXHIBIT 11.3  Principal Component Shocks to Spot Curve Smoothed Via
Cubic Splines

Suppose

is a hypothetical interest rate shock defined in terms of key rate changes.
We claim that  corresponds to a particular realization of some stan-
dard normal random variable y. In other words, all interest rate shocks
of a given shape are in one-to-one correspondence with the set of real-
izations of y. Therefore, we can speak about the probability of  occur-
ring. We will now construct y and establish its relationship with .

Let

be a unit vector whose shape is the same as that of , in other words,

Y y1 … yn, ,( )KR=

Y

Y
Y

y ŷ1 … ŷn, ,( )KR=

Y

ŷi yi yi
2

i 1=

n

∑⁄=
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Similarly to the way we define principal components, define a new ran-
dom variable Y to be the linear combination

where  are real numbers and Ki are changes in key rates (random vari-
ables). Then the variance of Y is given by

(6)

We will now construct a new coordinate system in the space of spot
curve changes. It will correspond to the new orthogonal basis B (differ-
ent from principal components) such that Y is the first element in B. We
modify the principal component optimization problem as follows:

 ■ In the first step, instead of selecting a linear combination of changes in
key rates which explains the maximum amount of variance, select Y.

 ■ In each following step, find a linear combination of key rates which
explains the maximum of the remaining variability in the system.

 ■ Every newly selected element of the basis B should be orthogonal to all
previously selected elements of B.

As a result, we have selected a set of n orthogonal variables which
explain the total historical variability of interest rate movements. More-
over, Y is the first element in this basis. Define , then y is a
standard normal variable. The analog of equation (3) in this new coor-
dinate system is given by

(7)

or simply

(8)

Y ŷi Ki×
i 1=

n

∑=

ŷi

σ2 Y( ) ŷ1 … ŷn, ,( ) ℑ ŷ1 … ŷn, ,( )
T

××=

y Y σ Y( )⁄=

x1

…
xn

ŷ1

…
ŷn

Y× …+=

x1

…
xn

σ Y( ) ŷ1×
…

σ Y( ) ŷn×
y …+×=
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Measuring the Plausibility of Hypothetical Interest Rate Shocks 305

where

is the one standard deviation shock corresponding to Y. Therefore, due to
orthogonality, every interest rate shock whose shape is the same as that of

 (and ) corresponds to a particular realization of the standard normal
variable y.

For example, consider 10 key rates (n = 10) and suppose  is a 200
bps parallel spot curve shock:

Then

is the corresponding unit vector which has the same shape as . Using
the RiskMetricsTM dataset, we can compute the standard deviation of
the corresponding random variable Y. It can be shown that the “one
standard deviation parallel shock” on 9/30/96 was 92 bps. Therefore,
since we started with a parallel 200 bps spot curve shock, it implies a
200/92 = 2.17 standard deviation realization in the underlying standard
normal variable. Then the probability of an annualized parallel shock
over 200 bps is 0.015.

The magnitude of a one standard deviation parallel shock varies
with the total variability in the market. Thus, on 2/4/97 the one stan-
dard deviation parallel shock was 73 bps and the probability of a paral-
lel shock being over 200 bps was 0.003.

Ability to derive the distribution of interest rate shocks of a given
shape leads us to the following important concepts.

Parallel First Principal Component
Many practitioners believe that it is convenient and intuitive to force the
first principal component duration to equal effective duration.5 To
achieve this, we need to assume that the first principal component is a
parallel spot curve shock. However, unlike the first principal compo-
nent, a parallel spot curve shock is correlated with steepness and curva-

5 Ram Wilner, “A New Tool for Portfolio Managers: Level, Slope, and Curvature
Durations,” Journal of Fixed Income (June 1996), pp. 48–59.

σ Y( ) ŷ× 1 … σ Y( ) ŷn×, ,( )KR
T

Y y

Y

Y 200 … 200, ,( )KR=

y 1 10⁄ … 1 10⁄, ,( )KR=

Y
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ture (second and third principal components, respectively). Therefore,
immunization and simulation techniques involving principal compo-
nents become more complicated. Via the method introduced above, we
can create a new coordinate system which has a parallel shock as the
first basis vector. In this case, since we need to maintain orthogonality in
the new coordinate system, the shapes of steepness and curvature will
change. Nevertheless, the first three factors will still explain a vast
majority of the total variability in the system. We believe, however, that
the humped shape of the first principal component should not be
ignored. As discussed below, it is meaningful and can be used as a tool
while placing yield curve bets.

Explanatory Power of a Given Curve Shock
Among all interest rate shocks, the first principal component has the max-
imum explanatory power by construction. For instance, Exhibit 11.1 indi-
cates that the first principal component “explains” 92% of the recent
historical spot curve movements. The number 92% is the ratio of the vari-
ance of the first principal component to the total variance in the system
(sum of all principal components’ variances). We now know how to com-
pute a “one standard deviation shock” of a given shape as well as its vari-
ance via equation (4). The ratio of the variance of the parallel shock to the
total variance in the system in the above example is 87%. This means that
on 9/30/96 a parallel spot curve shock “explained” 87% of the historical
spot curve movements. We will call the ratio of the percentage of total
variability explained by a given shock to the percentage of total variability
explained by the first principal component the explanatory power of the
given shock. The explanatory power of the first principal component is 1;
that of a parallel spot shock in the given example is 95%.

Magnitude Plausibility of a Given Curve Shock
Once we know how many standard deviations k of the underlying stan-
dard normal variable a given interest rate shock Y implies, we can talk
about the historical magnitude plausibility mpl(Y) of this shock. Let Ψ
denote the event “we guessed the direction of change in rates.” We
define the magnitude plausibility of a given interest rate shock  as

(9)

We can simplify equation (7) as follows:

(10)

Y

mpl Y( ) Prob y k     Ψ>( )=

mpl Y( ) 2 Prob y k>( )×=
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EXHIBIT 11.4  SEDUR Shock Applied to OTR Curve as of 9/30/96

For example, the magnitude plausibility of a 200 bps spot curve
shock is 3% whereas the magnitude plausibility of a 25 bps parallel spot
curve shock is 78%.

The interest rate shock used by Klaffky, Ma, and Nozari to compute
what they call short-end duration (SEDUR) is defined as a 50-basis
point steepener at the short end.6 (See Exhibit 11.4.) It can be shown
that the explanatory power of SEDUR is 38% and the magnitude plau-
sibility is 54%.

SHAPE PLAUSIBILITY

The previous section deals with the quantitative measurement of the
magnitude plausibility of a given spot curve shock. Thus we start with
an interest rate shock of a given shape and then derive its distribution

6 T.E. Klaffky, Y.Y. Ma, and A. Nozari, “Managing Yield Curve Exposure: Intro-
ducing Reshaping Durations,” Journal of Fixed Income (December 1992), pp. 5–15.
Note that SEDUR shock is applied to the OTR curve. To perform principal compo-
nent decomposition, we first need to analytically transform it into a shock to the spot
curve.
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which is used to determine if the magnitude of the given shock is reason-
able given the recent covariance of interest rates. However, the issue of
whether the shape of the shock is plausible from the historical perspec-
tive is never considered. This section deals with an independent assess-
ment of the shape plausibility of interest rate shocks.

Principal components are the latent factors which depict the histori-
cal dynamics of interest rates. Therefore, we have a specific notion of
plausibility at hand. The “most plausible” or “ideal” shock is the one
whose “decomposition” into principal components is exactly that of the
system (Exhibit 11.1):

In other words, the first principal component should “contribute” 92.8%
to the “ideal” shock, the second should contribute 4.8%, the third 1.3%,
and so on. The measure of plausibility should be defined in a way that the
plausibility of an “ideal” shock is 1. On the other hand, it is natural to
consider “the least plausible” shock to be the last principal component
which has the least explanatory power and therefore is the least probable
one. Clearly, the decomposition of the least plausible shock into principal
components is . Thus, the measure of plausibility
should be defined in a way that the plausibility of the least plausible
shock is 0. Any other shock  will be somewhere in between the “ideal”
and “the least plausible” shocks, and will have plausibility 
between 0 and 1. Below we present one such measure of plausibility.7

Write a hypothetical interest rate shock  in terms of principal
components:

Since  is a vector, it is reasonable to define the “contribution” of the i-th
principal component in  based on the percentage of the squared
length of  due to , for example,

7 For alternative approaches, see “measures of consistency” introduced by P.M.
Brusilovsky and L.M. Tilman (“Incorporating Expert Judgement into Multivariate
Polynomial Modeling,” Decision Support Systems (October 1996), pp. 199–214).
One may also think of the explanatory power of a shock as an alternative measure
of shape plausibility.

λ̂ 92.80 4.80 1.27 …0.03, , ,{ }=

γ̂ 0 …0 100,,{ }=

X
spl X( )

X

X p1 … pn, ,( )PC=

X
X

X pi

p̂i pi
2 pi

2

i 1=

n

∑⁄=
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Hence, to measure the shape plausibility of  is equivalent to measuring
how different the vector is from the “ideal” shock. Let 
be the “distance” between  and the ideal shock. Since the maximum
distance between any two vectors is the distance  between an
“ideal” and “the least plausible” shocks, there is a way to normalize the
measure of plausibility and present it as a number between 0 and 1.

We define the shape plausibility of  as 

(11)

where

(12)

The functional form of the “distance” measure in equation (10) is not
unique. We have experimented with several other functional representa-
tions only to discover that they fail to effectively differentiate between
shapes of interest rate shocks, thus making the mapping 
almost a step function.

For example, to measure the shape plausibility of SEDUR, write its
decomposition into principal components along with that of the “ideal”
and “least plausible” shocks (Exhibit 11.5). It can be shown via equa-
tions (9) and (10) that . This means that from the
historical perspective, the shape of SEDUR shock is not very plausible.
Therefore, one may question the meaningfulness of the corresponding
duration.

It should be noted that all characteristics of a given interest rate
shock, such as “explanatory power,” “magnitude plausibility,” and
“shape plausibility” depend on historical data and may vary dramati-
cally over time.

EXHIBIT 11.5  Shape Plausibility and Principal Component Decomposition

Principal Component Decomposition (%)

Shock Spl (.) 1 2 3 4 5 6 7 8 9 10

Ideal 1.00 92.80   4.80 1.27 0.62 0.20 0.11 0.09 0.06 0.03     0.03

Least Plausible 0.00   0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

SEDUR 0.41 34.67 59.58 0.67 1.87 0.17 0.30 1.08 0.02 1.62     0.02

X
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FIRST PRINCIPAL COMPONENT AND THE
TERM STRUCTURE OF VOLATILITY

Changes in U.S. Treasury spot rates are generally highly correlated. This
fact has significant implications in interpreting the shape of the first
principal component. This section deals with this issue. We claim that
when spot rates are highly correlated, the shape of the first principal
component resembles the shape of the term structure of volatility
(TSOV) of changes in spot rates. The above statement provides the intu-
ition behind the reason why, according to Ehud Ronn, “large-move days
reflect more of a level [first principal component] shift in interest
rates.”8 It also enables us to conclude that on days when the market
moves substantially (e.g., more than two standard deviations) the rela-
tive changes in spot rates are almost solely a function of their historical
volatilities. We now provide the informal proof of this claim.

Let ri and rj be spot rates of maturities i and j, respectively. Let σi
and σj be the volatilities of changes of ri and rj, respectively, while pc1,i
and pc1,j be the coefficients of the first principal component correspond-
ing to ri and rj. The statement “the shape of the first principal compo-
nent resembles that of TSOV of spot rate changes” is equivalent to the
following identity:

(13)

Our argument is based on the following representation of the prin-
cipal component coefficients:9

(14)

where  and  are the correlations between the first principal com-
ponent and the rates ri and rj, respectively. Note that since all spot key
rates are highly correlated, they will be also highly correlated with the
principal components, , and then equation (11) yields

8 E.I. Ronn, “The Impact of Large Changes in Asset Prices on Intra-Market Correla-
tions in the Stock and Bond Markets,” Working Paper, University of Texas in Aus-
tin, 1996.
9 See R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis (En-
glewood Cliffs: Prentice-Hall, 1982).
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(15)

There are a number of interesting implications of the above result.
For instance, when the market rallies, the long end of the spot curve
steepens, and when the market sells off, the long end of the spot curve
flattens. To see that, just notice that since the historical volatility of the
10-year rate is higher than the historical volatility of the 30-year rate,
the changes in the former are generally larger than those in the latter.
Therefore when the market rallies, according to the shape of the first
principal component, the 10-year rate should decrease more than the
30-year rate; hence the spot curve should steepen.

U.S. Treasury bond market data seems to support this result:10 over
the 4-year period November 1992–November 1996, the ratio of bull
steepenings to bull flattenings of the spot curve was 2.5:1, and the ratio
of bear flattenings to bear steepenings was 2.75:1. If we study the steep-
eners/flatteners of the OTR Treasury curve instead, we will notice that
while bull steepening and bear flattening patterns dominate, the propor-
tions are different: Over the same time period, the ratio of bull steepen-
ings to bull flattenings of the OTR Treasury curve was 1.6:1, and the
ratio of bear flattenings to bear steepenings was 6.5:1.

CONCLUSION

One of the advantages of key rate durations is the ability to estimate the
instantaneous return on a portfolio given a hypothetical curve shift. The
latter does not require us to do any additional simulations. Until now,
sensitivity analysis was never concerned with the issue of whether the
utilized hypothetical shocks were plausible from a historical perspective.
The measures of plausibility of interest rate shocks introduced in this
chapter constrain interest rate shocks used in sensitivity analysis and
portfolio optimization. They provide discipline to the scenario analysis
by excluding historically implausible interest rate shocks from consider-
ation. The framework which allows us to compute the distribution of

10 Monthly changes in the level and steepness of the U.S. spot and OTR curves were
considered. We define the market as “bull” if the 10-year spot (OTR) key rate fell
more that 5 bps, “bear” if it rose more that 5 bps, and “neutral” otherwise. Likewise,
a change in the slope of the spot (OTR) curve is defined as a “steepening” if the
spread between the 2-year and 30-year increased by more than 5 bps, “flattening” if
it decreased by more than 5 bps, and “neutral” otherwise.
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interest rate shocks of a given shape is important by itself. In another
study,11 we utilize the knowledge about these distributions to simulate
interest rate shocks and make conscious tradeoffs between the value sur-
face and the yield curve dynamics while computing value-at-risk.

11 Chapter 5 in B. Golub and L. Tilman, Risk Management: Approaches for Fixed
Income Markets (New York: J. Wiley & Sons, 2000).
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CHAPTER 12

315

Understanding the
Building Blocks for OAS Models

Philip O. Obazee*
Vice President

Delaware Investments

nvestors and analysts continue to wrestle with the differences in option-
adjusted-spread (OAS) values for securities they see from competing

dealers and vendors. And portfolio managers continue to pose fundamen-
tal questions about OAS with which we all struggle in the financial indus-
try. Some of the frequently asked questions are

 

 ■ How can we interpret the difference in dealers’ OAS values for a spe-
cific security?

 

 ■ What is responsible for the differences?

 

 ■ Is there really a correct OAS value for a given security?

In this chapter, we examine some of the questions about OAS analy-
sis, particularly the basic building block issues about OAS implementa-
tion. Because some of these issues determine “good or bad” OAS
results, we believe there is a need to discuss them. To get at these funda-
mental issues, we hope to avoid sounding pedantic by relegating most of
the notations and expressions to the footnotes.

Clearly, it could be argued that portfolio managers do not need to
understand the OAS engine to use it but that they need to know how to

I

* This chapter was written while Philip Obazee was Vice President, Quantitative Re-
search, First Union Securities, Inc.
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apply it in relative value decisions. This argument would be correct if there
were market standards for representing and generating interest rates and
prepayments. In the absence of a market standard, investors need to be
familiar with the economic intuitions and basic assumptions made by the
underlying models. More important, investors need to understand what
works for their situation and possibly identify those situations in which one
model incorrectly values a bond. Exhibit 12.1 shows a sample of OAS anal-
ysis for passthrough securities. Although passthroughs are commoditized
securities, the variance in OAS results is still wide. This variance is attribut-
able to differences in the implementation of the respective OAS models.

Unlike other market measures, for example, yield to maturity and the
weighted average life of a bond, which have market standards for calcu-
lating their values, OAS calculations suffer from the lack of a standard
and a black-box mentality. The lack of a standard stems from the
required inputs in the form of interest rate and prepayment models that
go into an OAS calculation. Although there are many different interest
rate models available, there is little agreement on which one to use. More-
over, there is no agreement on how to model prepayments. The black-box
mentality comes from the fact that heavy mathematical machinery and
computational algorithms are involved in the development and imple-
mentation of an OAS model. This machinery is often so cryptic that only
a few initiated members of the intellectual tribe can decipher it. In addi-
tion, dealers invest large sums in the development of their term structures
and prepayment models and, consequently, they are reluctant to share it. 

OAS: Option-adjusted spread.
* As of July 12, 2000, close.
Source: First Union Securities, Inc. (FUSI).

EXHIBIT 12.1  Selected Sample of OAS Analysis Results*

Security
Name

FUSI
OAS

Major Vendor
Espiel OAS

Major Street
Firm OAS

FNCL600 122 118 119
FNCL650 115 113 113
FNCL700 113 117 112
GN600 106 114 100
GN650 101 111 101
GN700 100 116 103
FNCI600   95   98 103
FNCI650   94   99 103
FNCI700   92 101 103
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In this chapter, we review some of the proposed term structures and
prepayments. Many of the term structure models describe “what is” and
only suggest that the models could be used. Which model to use perhaps
depends on the problem at hand and the resources available. In this
chapter, we review some of the popular term structure models and pro-
vide some general suggestions on which ones should not be used.

Investors in asset-backed securities (ABS) and mortgage-backed secu-
rities (MBS) hold long positions in noncallable bonds and short positions
in call (prepayment) options. The noncallable bond is a bundle of zero-
coupon bonds (e.g., Treasury strips), and the call option gives the bor-
rower the right to prepay the mortgage at any time prior to the maturity
of the loan. In this framework, the value of MBS is the difference between
the value of the noncallable bond and the value of the call (prepayment)
option. Suppose a theoretical model is developed to value the components
of ABS/MBS. The model would value the noncallable component, which
we loosely label the zero volatility component, and the call option com-
ponent. If interest rate and prepayment risks are well accounted for, and
if those are the only risks for which investors demand compensation, one
would expect the theoretical value of the bond to be equal to its market
value. If these values are not equal, then market participants demand
compensation for the unmodeled risks. One of these unmodeled risks is
the forecast error associated with the prepayments. By this, we mean the
actual prepayment may be faster or slower than projected by the model.
Other unmodeled risks are attributable to the structure and liquidity of
the bond. In this case, OAS is the market price for the unmodeled risks.

To many market participants, however, OAS indicates whether a
bond is mispriced. All else being equal, given that interest rate and pre-
payment risks have been accounted for, one would expect the theoretical
price of a bond to be equal to its market price. If these two values are
not equal, a profitable opportunity may exist in a given security or a
sector. Moreover, OAS is viewed as a tool that helps identify which
securities are cheap or rich when the securities are relatively priced.

The zero volatility component of ABS/MBS valuation is attributable to
the pure interest rate risk of a known cash flow—a noncallable bond. The
forward interest rate is the main value driver of a noncallable bond.
Indeed, the value driver of a noncallable bond is the sum of the rolling
yield and the value of the convexity. The rolling yield is the return earned
if the yield curve and the expected volatility are unchanged. Convexity
refers to the curvature of the price-yield curve. A noncallable bond exhib-
its varying degrees of positive convexity. Positive convexity means a bond’s
price rises more for a given yield decline than it falls for the same yield. By
unbundling the noncallable bond components in ABS/MBS to their zero-
coupon bond components, the rolling yield becomes dominant. Hence, it
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is called the zero volatility component—that is, the component of the yield
spread that is attributable to no change in the expected volatility.

The call option component in ABS/MBS valuation consists of intrin-
sic and time values. To the extent the option embedded in ABS/MBS is
the delayed American exercise style—in other words, the option is not
exercised immediately but becomes exercisable any time afterward—the
time value component dominates. Thus, in valuing ABS/MBS, the time
value of the option associated with the prepayment volatility needs to
be evaluated. To evaluate this option, OAS analysis uses an option-
based technique to evaluate ABS/MBS prices under different interest
rate scenarios. OAS is the spread differential between the zero volatility
and option value components of MBS. These values are expressed as
spreads measured in basis points. Exhibit 12.2 shows the FNMA 30-
year current-coupon OAS over a 3-year period.

The option component is the premium paid (earned) from going
long (shorting) a prepayment option embedded in the bond. The bond-
holders are short the option, and they earn the premium in the form of
an enhanced coupon. Mortgage holders are long the prepayment option,
and they pay the premium in spread above the comparable Treasury.
The option component is the cost associated with the variability in cash
flow that results from prepayments over time.

The two main inputs into the determination of an OAS of a bond
are as follows:

 

 ■ Generate the cash flow as a function of the principal (scheduled and
unscheduled) and coupon payments.

 

 ■ Generate interest rate paths under an assumed term structure model.

EXHIBIT 12.2  FNMA 30-Year Current-Coupon OAS

FNMA: Fannie Mae; OAS: Option-adjusted spread.
Source: First UnSecurities, Inc.
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At each cash flow date, a spot rate determines the discount factor for
each cash flow. The present value of the cash flow is equal to the sum of
the product of the cash flow and the discount factors.1 When dealing
with a case in which uncertainty about future prospects is important, the
cash flow and the spot rate need to be specified to account for the uncer-
tainty.2 The cash flow and spot rate become a function of time and the
state of the economy. The time consideration is that a dollar received now
is worth more than one received tomorrow. The state of the economy
consideration accounts for the fact that a dollar received in a good econ-
omy may be perceived as worth less than a dollar earned in a bad econ-
omy. For OAS analysis, the cash flow is run through different economic
environments represented by interest rates and prepayment scenarios.
The spot rate, which is used to discount the cash flow, is run through time
steps and interest rate scenarios. The spot rate represents the instanta-
neous rate of risk-free return at any time, so that $1 invested now will
have grown by a later time to $1 multiplied by a continuously com-
pounded rollover rate during the time period.3 Arbitrage pricing theory

1 In the world of certainty, the present value is

where, ri is the spot rate applicable to cash flow cfi. In terms of forward rates, the
equation becomes

where fi is the forward rate applicable to cash flow cfi.
2 The present value formula becomes more complicated and could be represented as

where,
PV

 

Ω = the present value of uncertain cash flow
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For OAS analysis, a stylized version of the previous equation is given by
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stipulates the price one should pay now to receive $1 at later time is the
expected discount of the payoff.4 So by appealing to the arbitrage pricing
theory, we are prompted to introduce an integral representation for the
value equation; in other words, the arbitrage pricing theory allows us to
use the value additivity principle across all interest rate scenarios.

IS IT EQUILIBRIUM OR AN ARBITRAGE MODEL?

Market participants are guided in their investment decision making by
received economic philosophy or intuition. Investors, in general, look at
value from either an absolute or relative value basis. Absolute value basis
proceeds from the economic notion that the market clears at an exoge-
nously determined price that equates supply-and-demand forces. Absolute
valuation models are usually supported by general or partial equilibrium
arguments. In implementing market measure models that depend on equi-
librium analysis, the role of an investor’s preference for risky prospects is
directly introduced. The formidable task encountered with respect to
preference modeling and the related aggregation problem has rendered
these types of models useless for most practical considerations. One main
exception is the present value rule that explicitly assumes investors have a
time preference for today’s dollar. Where the present value function is a
monotonically decreasing function of time, today’s dollar is worth more
than a dollar earned tomorrow. Earlier term structure models were sup-
ported by equilibrium arguments, for example, the Cox, Ingersoll, and
Ross (CIR) model.5 In particular, CIR provides an equilibrium foundation
for a class of yield curves by specifying the endowments and preferences
of traders, which, through the clearing of competitive markets, generates
the proposed term structure model.

Relative valuation models rely on arbitrage and dominance principles
and characterize asset prices in terms of other asset prices. A well-known
example of this class is the Black-Scholes6 and Merton7 option pricing
model. Modern term structure models, for example, Hull and White,8

4

5 J. Cox, J. Ingersoll, and S. Ross, “A Theory of the Term Structure of Interest
Rates,” Econometrica, 53 (1985), pp. 385–408.
6 F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Jour-
nal of Political Economy, 81 (1973), pp. 637–654.
7 R. Merton, “The Theory of Rational Option Pricing,” Bell Journal of Economics
and Management Science, 4 (1974), pp. 141–183.
8 J. Hull and A. White, “Pricing Interest Rate Derivatives Securities,” Review of Fi-
nancial Studies, 3 (1990), pp. 573–592.
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Black-Derman-Toy (BDT),9 and Heath, Jarrow, and Morton (HJM),10 are
based on arbitrage arguments. Although relative valuation models based
on arbitrage principles do not directly make assumptions about investors’
preferences, there remains a vestige of the continuity of preference, for
example, the notion that investors prefer more wealth to less. Thus,
whereas modelers are quick in attributing “arbitrage-freeness” to their
models, assuming there are no arbitrage opportunities implies a continuity
of preference that can be supported in equilibrium. So, if there are no arbi-
trage opportunities, the model is in equilibrium for some specification of
endowments and preferences. The upshot is that the distinction between
equilibrium models and arbitrage models is a stylized fetish among ana-
lysts to demarcate models that explicitly specify endowment and prefer-
ence sets (equilibrium) and those models that are outwardly silent about
the preference set (arbitrage). Moreover, analysts usually distinguish equi-
librium models as those that use today’s term structure as an output and
no-arbitrage models as those that use today’s term structure as an input.

Arbitrage opportunity exists in a market model if there is a strategy
that guarantees a positive payoff in some state of the world with no possi-
bility of negative payoff and no initial net investment. The presence of arbi-
trage opportunity is inconsistent with economic equilibrium populated by
market participants that have increasing and continuous preferences. More-
over, the presence of arbitrage opportunity is inconsistent with the existence
of an optimal portfolio strategy for market participants with nonsatiated
preferences (prefer more to less) because there would be no limit to the scale
at which they want to hold an arbitrage position. The economic hypothesis
that maintains two perfect substitutes (two bonds with the same credit
quality and structural characteristics issued by the same firm) must trade at
the same price is an implication of no arbitrage. This idea is commonly
referred to as the law of one price. Technically speaking, the fundamental
theorem of asset pricing is a collection of canonical equivalent statements
that implies the absence of arbitrage in a market model. The theorem pro-
vides for weak equivalence between the absence of arbitrage, the existence
of a linear pricing rule, and the existence of optimal demand from some
market participants who prefer more to less. The direct consequence of
these canonical statements is the pricing rule: the existence of a positive lin-
ear pricing rule, the existence of positive risk-neutral probabilities, and
associated riskless rate or the existence of a positive state price density.

9 F. Black, E. Derman, and W. Toy, “A One Factor Model of Interest Rates and Its
Application to Treasury Bond Options,” Financial Analysts Journal (1990), pp.
33–39.
10 D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of In-
terest Rates: A New Methodology for Contingent Claims Valuation,” Econometrica,
60 (1992), pp. 77–105.
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In essence, the pricing rule representation provides a way of cor-
rectly valuing a security when the arbitrage opportunity is eliminated. A
fair price for a security is the arbitrage-free price. The arbitrage-free
price is used as a benchmark in relative value analysis to the extent that
it is compared with the price observed in actual trading. A significant
difference between the observed and arbitrage-free values may indicate
the following profit opportunities:

 ■ If the arbitrage price is above the observed price, all else being equal,
the security is cheap and a long position may be called for.

 ■ If the arbitrage price is below the observed price, all else being equal,
the security is rich and a short position may be called for.

In practice, the basic steps in determining the arbitrage-free value of
the security are as follows:

 ■ Specify a model for the evolution of the underlying security price.
 ■ Obtain a risk-neutral probability.
 ■ Calculate the expected value at expiration using the risk-neutral proba-

bility.
 ■ Discount this expectation using the risk-free rates.

In studying the solution to the security valuation problem in the
arbitrage pricing framework, analysts usually use one of the following:

 ■ Partial differential equation (PDE) framework
 ■ Equivalent martingale measure framework

The PDE framework is a direct approach and involves constructing a
risk-free portfolio, then deriving a PDE implied by the lack of arbitrage
opportunity. The PDE is solved analytically or evaluated numerically.11

11 For example, the PDE for a zero-coupon bond price is

where
p = zero-coupon price
r = instantaneous risk-free rate
µ = the drift rate
σ = volatility
λ = market price of risk

To solve the zero-coupon price PDE, we must state the final and boundary condi-
tions. The final condition that corresponds to payoff at maturity is p(r, T) = k.

∂p

∂t
------

1

2
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Although there are few analytical solutions for pricing PDEs, most
of them are evaluated using numerical methods such as lattice, finite dif-
ference, and Monte Carlo. The equivalent martingale measure frame-
work uses the notion of arbitrage to determine a probability measure
under which security prices are martingales once discounted. The new
probability measure is used to calculate the expected value of the secu-
rity at expiration and discounting with the risk-free rate.

WHICH IS THE RIGHT MODEL OF THE 
INTEREST RATE PROCESS?

The bare essential of the bond market is a collection of zero-coupon
bonds for each date, for example, now, that mature later. A zero-coupon
bond with a given maturity date is a contract that guarantees the investor
$1 to be paid at maturity. The price of a zero-coupon bond at time t with
a maturity date of T is denoted by P(t, T). In general, analysts make the
following simplifying assumptions about the bond market:

 ■ There exists a frictionless and competitive market for a zero-coupon
bond for every maturity date. By a frictionless market, we mean there
is no transaction cost in buying and selling securities and there is no
restriction on trades such as a short sale.

 ■ For every fixed date, the price of a zero-coupon bond, {P(t, T); 0 ≤ t ≤
T}, is a stochastic process with P(t, t) = 1 for all t. By stochastic process,
we mean the price of a zero-coupon bond moves in an unpredictable
fashion from the date it was bought until it matures. The present value
of a zero-coupon bond when it was bought is known for certain and it
is normalized to equal one.

 ■ For every fixed date, the price for a zero-coupon bond is continuous in
that at every trading date the market is well bid for the zero-coupon
bond.

In addition to zero-coupon bonds, the bond market has a money
market (bank account) initialized with a unit of money.12 The bank
account serves as an accumulator factor for rolling over the bond.

A term structure model establishes a mathematical relationship that
determines the price of a zero-coupon bond, {P(t, T); 0 ≤ t ≤ T}, for all

12 The bank account is denoted by

and B(0) = 1.

B t( ) exp r u( ) ud
0

t

∫=
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dates t between the time the bond is bought (time 0) and when it
matures (time T). Alternatively, the term structure shows the relation-
ship between the yield to maturity and the time to maturity of the bond.
To compute the value of a security dependent on the term structure, one
needs to specify the dynamic of the interest rate process and apply an
arbitrage restriction. A term structure model satisfies the arbitrage
restriction if there is no opportunity to invest risk-free and be guaran-
teed a positive return.13

To specify the dynamic of the interest rate process, analysts have
always considered a dynamic that is mathematically tractable and
anchored in sound economic reasoning. The basic tenet is that the
dynamic of interest rates is governed by time and the uncertain state of
the world. Modeling time and uncertainty are the hallmarks of modern
financial theory. The uncertainty problem has been modeled with the aid
of the probabilistic theory of the stochastic process. The stochastic pro-
cess models the occurrence of random phenomena; in other words, the
process is used to describe unpredictable movements. The stochastic
process is a collection of random variables that take values in the state
space. The basic elements distinguishing a stochastic process are state
space14 and index parameter,15 and the dependent relationship among
the random variables (e.g., Xt).

16 The Poisson process and Brownian
motion are two fundamental examples of continuous time stochastic

13 Technically, the term structure model is said to be arbitrage-free if and only if there
is a probability measure Q on Ω (Q ~ P) with the same null

set as P, such that for each t, the process is a martingale under Q.
14 State space is the space in which the possible values of Xt lie. Let S be the state
space. If S = (0, 1, 2...), the process is called the discrete state process. If S = ℜ(−∞,
∞) that is the real line, and the process is called the real-valued stochastic process. If
S is Euclidean d-space, then the process is called the d-dimensional process.
15 Index parameter: If T = (0, 1...), then Xt is called the discrete-time stochastic pro-
cess. If T = ℜ+[0, ∞), then Xt is called a continuous time stochastic process.
16 Formally, a stochastic process is a family of random variables X = {xt; t ∈ T},
where T is an ordered subset of the positive real line ℜ+. A stochastic process X with
a time set [0, T] can be viewed as a mapping from Ω × [0, T] to ℜ with x(ω, t) de-
noting the value of the process at time t and state ω. For each ω ∈ Ω, {x(ω, t); t ∈
[0,T]} is a sample path of X sometimes denoted as x(ω, •). A stochastic process X
={xt; t ∈ [0, T]} is said to be adapted to filtration F if xt is measurable with respect
to Ft for all t ∈ [0, T]. The adaptedness of a process is an informational constraint:
The value of the process at any time t cannot depend on the information yet to be
revealed strictly after t.

Z t T,( )
P t T,( )
B t( )

-----------------= 0 t T≤ ≤,
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processes. Exhibits 12.3 and 12.4 show the schematics of the Poisson
process and Brownian motion.

In everyday financial market experiences, one may observe, at a
given instant, three possible states of the world: Prices may go up a tick,
decrease a tick, or do not change. The ordinary market condition char-
acterizes most trading days; however, security prices may from time to
time exhibit extreme behavior. In financial modeling, there is the need to
distinguish between rare and normal events. Rare events usually bring
about discontinuity in prices. The Poisson process is used to model
jumps caused by rare events and is a discontinuous process. Brownian
motion is used to model ordinary market events for which extremes
occur only infrequently according to the probabilities in the tail areas of
normal distribution.17

EXHIBIT 12.3  Poisson Process

Source: First Union Securities, Inc.

17 A process X is said to have an independent increment if the random variables x(t1)
− x(t0), x(t2) − x(t1) ... and x(tn) − x(tn-1) are independent for any n ≥ 1 and 0 ≤ t0 <
t1 < ... < tn ≤ T. A process X is said to have a stationary independent increment if,
moreover, the distribution of x(t) − x(s) depends only on t − s. We write z ~ N(µ, σ2)
to mean the random variable z has normal distribution with mean µ and variance σ2.
A standard Brownian motion W is a process having continuous sample paths, sta-
tionary independent increments and W(t) ~ N(µ, t) (under probability measure P).
Note that if X is a continuous process with stationary and independent increments,
then X is a Brownian motion. A strong Markov property is a memoryless property
of a Brownian motion. Given X as a Markov process, the past and future are statis-
tically independent when the present is known.
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EXHIBIT 12.4  Brownian Motion Path

Source: First Union Securities, Inc.

Brownian motion is a continuous martingale. Martingale theory
describes the trend of an observed time series. A stochastic process
behaves like a martingale if its trajectories display no discernible trends.

 ■ A stochastic process that, on average, increases is called a submartin-
gale.

 ■ A stochastic process that, on average, declines is called a supermartin-
gale.

Suppose one has an interest in generating a forecast of a process (e.g.,
Rt − interest rate) by expressing the forecast based on what has been
observed about R based on the information available (e.g., Ft) at time t.18

This type of forecast, which is based on conditioning on information
observed up to a time, has a role in financial modeling. This role is encap-
sulated in a martingale property.19 A martingale is a process, the expecta-
tion for which future values conditional on current information are equal

18 We write
Et[Rt] = E[RT|Ft], t < T

19 More concretely, given a probability space, a process {Rt t ∈(0, ∞)} is a martingale
with respect to information sets Ft, if for all t > 0,

1. Rt is known, given Ft, that is, Rt is Ft adapted
2. Unconditional forecast is finite; E|Rt| < ∞
3. And if

Et[Rt] = RT, ∀ t < T

with a probability of 1. The best forecast of unobserved future value is the last ob-
servation on Rt.
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to the value of the process at present. A martingale embodies the notion
of a fair gamble: The expected gain from participating in a family of fair
gambles is always zero and, thus, the accumulated wealth does not
change in expectation over time. Note the actual price of a zero-coupon
bond does not move like a martingale. Asset prices move more like sub-
martingales or supermartingales. The usefulness of martingales in finan-
cial modeling stems from the fact one can find a probability measure that
is absolutely continuous with objective probability such that bond prices
discounted by a risk-free rate become martingales. The probability mea-
sures that convert discounted asset prices into martingales are called
equivalent martingale measures. The basic idea is that, in the absence of
an arbitrage opportunity, one can find a synthetic probability measure Q
absolutely continuous with respect to the original measure P so that all
properly discounted asset prices behave as martingales. A fundamental
theorem that allows one to transform Rt into a martingale by switching
the probability measure from P to Q is called the Girsanov Theorem.

The powerful assertion of the Girsanov Theorem provides the
ammunition for solving a stochastic differential equation driven by
Brownian motion in the following sense: By changing the underlying
probability measure, the process that was driving the Brownian motion
becomes, under the equivalent measure, the solution to the differential
equation. In financial modeling, the analog to this technical result says
that in a risk-neutral economy assets should earn a risk-free rate. In par-
ticular, in the option valuation, assuming the existence of a risk-neutral
probability measure allows one to dispense with the drift term, which
makes the diffusion term (volatility) the dominant value driver.

To model the dynamic of interest rates, it is generally assumed the
change in rates over instantaneous time is the sum of the drift and diffu-
sion terms (see Exhibit 12.5).20 The drift term could be seen as the aver-
age movement of the process over the next instants of time, and the
diffusion is the amplitude (width) of the movement. If the first two
moments are sufficient to describe the distribution of the asset return, the
drift term accounts for the mean rate of return and the diffusion accounts
for the standard deviation (volatility). Empirical evidence has suggested

20 In particular, assume

dX(t) = α(t, X(t))dt + β(t, X(t))dW(t)

for which the solution X(t) is the factor. Depending on the application, one can
have n-factors, in which case we let X be an n-dimensional process and W an n-
dimensional Brownian motion. Assume the stochastic differential equation for X(t)
describes the interest process r(t), (i.e., r(t) is a function of X(t)). A one-factor model
of interest rate is

dr(t) = α(t)dt + β(t)dW(t)
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that interest rates tend to move back to some long-term average, a phe-
nomenon known as mean reverting that corresponds to the Ornstein-
Ulhenbeck process (see Exhibit 12.6).21 When rates are high, mean rever-
sion tends to cause interest rates to have a negative drift; when rates are
low, mean reversion tends to cause interest rates to have a positive drift.

EXHIBIT 12.5  Drift and Diffusion

Source: First Union Securities, Inc.

EXHIBIT 12.6  Process with Mean Reversion (Ornstein-Uhlenbeck Process)

Source: First Union Securities, Inc.

21 This process is represented as

dr = a(b − r)dt + σrβdW

where, a and b are called the reversion speed and level, respectively.
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The highlights of the preceding discussion are as follows:

 ■ The modeler begins by decomposing bonds to their bare essentials,
which are zero-coupon bonds.

 ■ To model a bond market that consists of zero-coupon bonds, the
modeler makes some simplifying assumptions about the structure of
the market and the price behaviors.

 ■ A term structure model establishes a mathematical relationship that
determines the price of a zero-coupon bond and, to compute the
value of a security dependent on the term structure, the modeler
needs to specify the dynamic of the interest rate process and apply
arbitrage restriction.

 ■ The stochastic process is used to describe the time and uncertainty
components of the price of zero-coupon bonds.

 ■ There are two basic types of stochastic processes used in financial
modeling: The Poisson process is used to model jumps caused by rare
events, and Brownian motion is used to model ordinary market
events for which extremes occur only infrequently.

 ■ We assume the market for zero-coupon bonds is well bid, that is, the
zero-coupon price is continuous. Brownian motion is the suitable sto-
chastic process to describe the evolution of interest rates over time. In
particular, Brownian motion is a continuous martingale. Martingale
theory describes the trend of the observed time series.

 ■ Once we specify the evolution of interest rate movements, we need an
arbitrage pricing theory that tells us the price one should pay now to
receive $1 later is an expected discounted payoff. The issue to be
resolved is, What are the correct expected discount factors to use?
The discount must be determined by the market and based on risk-
adjusted probabilities. In particular, when all bonds are properly risk-
adjusted, they should earn risk-free rates; if not, arbitrage opportu-
nity exists to earn riskless profit.

 ■ The risk-adjusted probability consistent with the no-arbitrage condi-
tion is the equivalent martingale measure; it is the probability mea-
sure that converts the discounted bond price to a martingale (fair
price). The elegance of the martingale theory is the “roughs and tum-
bles” one finds in the world of partial differentiation are to some
extent avoided and the integral representation it allows fits nicely
with Monte Carlo simulations.

Several term structure models have been proposed with subtle dif-
ferences. However, the basic differences amount to how the dynamic of
the interest rate is specified, the number of factors that generate the rate
process, and whether the model is closed by equilibrium or arbitrage
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arguments. Some of the most popular term structure models can be
summarized in Exhibit 12.7.

EXHIBIT 12.7  Summary of Popular Term Structure Models

Hull and White (1990)/Extended Vasicek (1977)

Assumptions
■ Evolution of interest rates is driven by the short rate (one factor).
■ Short rates are normally distributed.
■ Instantaneous standard deviation of the short rate is constant.
■ Short rates are mean reverting with a constant reversion rate.

Model
■ Extended Vasicek model.
■ The two volatility parameters are a and θ.
■ a determines the relative volatilities of long and short rates, and the high value of a

causes short-term rate movement to dampen such that long-term volatility is reduced.
■ θ determines the overall volatility.
■ The short-rate dynamic is

dr = [θ(t) − ar] + σdW

Issues
■ Computational advantages (speed and convergence).
■ Analytical solution exists for pricing some European-style derivatives.
■ Normally distributed interest rates imply a finite probability of rates becoming zero

or negative.

Ho and Lee (HL, 1986)

Assumptions
■ Evolution of interest rates is driven by the short rate (one factor).
■ Short rates are normally distributed.
■ Instantaneous standard deviation of the short rate is constant.
■ Short rates are not mean reverting.

Model
■ The short-rate process is assumed to be an arithmetic process.
■ In continuous time, the short-rate dynamic of HL is

dr = θ(t) + σdW

■ θ(t) makes the model consistent with the initial term structure, and it can be seen
approximately as the slope of the forward curve.
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EXHIBIT 12.7      (Continued) 

Issues
■ Computational advantages (speed and convergence)
■ Closed-form solution exists for pricing European-style derivatives.
■ Nonexistence of a mean-reverting parameter on the model simplifies the calibration

of the model to market data.
■ Normally distributed interest rates imply a finite probability of rates becoming zero

or negative.
■ Nonexistence of mean reversion in the model implies all interest rates have the

same constant rate, which is different from market observations (the short rate is
more volatile than the long rate).

Cox, Ingersoll and Ross (CIR, 1985)

Assumptions
■ Evolution of interest rates is driven by the short rate (one factor).
■ Short rates are normally distributed.
■ Instantaneous standard deviation of the short rate is constant times the square root

of the interest rate.
■ Short rates are mean reverting with a constant reversion rate.

Model
■ The short-rate process is assumed to be a square root process.
■ In continuous time, the short-rate dynamic of CIR is

dr = a[θ − r] + σr¹�₂dW

Issues
■ Eliminating the possibility of negative interest rates
■ Analytical solution is difficult to implement, if you find one
■ Popular among academics because of its general equilibrium overtone

Black-Derman-Toy (BDT, 1990)

Assumptions
■ Evolution of interest rates is driven by the short rate (one factor).
■ Short rates are log normally distributed, and short rates cannot become negative.
■ Instantaneous standard deviation of the logarithmic short rate is constant.
■ The reversion rate is a function of the short-rate volatility.

Model
■ In continuous time, the short-rate dynamic of BDT is

dLog(r) = [θ(t) + (σ’(t)/σ(t))Log(r)]dt + σ(t)dW
where σ’(t)/σ(t) is the reversion rate that is a function of the short-rate volatility,
σ’(t) and its derivative with respect to time, σ’(t).
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EXHIBIT 12.7      (Continued) 

Issues
■ Eliminating the possibility of negative interest rates
■ No closed-form solution

Black and Karasinski (BK, 1991)

Assumptions
■ Separates the reversion rate and volatility in BDT
■ Provides a procedure for implementing the model using a binomial lattice with time

steps of varying lengths

Model
■ In continuous time, the short-rate dynamic of BK is

dLog(r) = [θ(t) + a(t)Log(r)]dt + σ(t)dW

Issues
■ Whether mean reversion and volatility parameter should be functions of time; by

making them a function of time, the volatility can be fitted at time zero correctly,
however, the volatility structure in the future may be dramatically different from
today

Heath, Jarrow, and Morton (HJM, 1992)

Assumptions
■ Evolution of interest rates is driven by the forward rates (one factor or multifactor).
■ Involves specifying the volatilities of all forward rates at all times
■ Non-Markovian
■ Expected drift of forward rate in risk-neutral world is calculated from its volatilities

Model
■ The HJM model characterizes the fundamental stochastic process for the evolution

of forward rates across time. The model takes as a given the initial forward rate curve
and imposes a fairly general stochastic structure on it. By using the equivalent mar-
tingale technique, the model shows the condition that the evolution of forward rates
must satisfy to be arbitrage-free. The basic condition is the existence of a unique
equivalent martingale measure under which the prices of all bonds, risk-adjusted in
terms of money market account, are martingales. HJM describes the evolution of for-
ward curves as follows:
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Which of these models to use in OAS analysis depends on the avail-
able resources. Where resource availability is not an issue, we favor mod-
els that account for the path-dependent nature of mortgage cash flows.
Good rules-of-thumb in deciding which model to use are as follows:

 ■ Flexibility: How flexible is the model?
 ■ Simplicity: Is the model easy to understand?
 ■ Specification: Is the specification of the interest rate process reason-

able?
 ■ Realism: How real is the model?
 ■ Good fit: How well does the result fit the market data?
 ■ Internal consistency rule: A necessary condition for the existence of

market equilibrium is the absence of arbitrage, and the external consis-
tency rule requires models to be calibrated to market data.

First Union Securities, Inc.’s (FUSI) proprietary interest rate model is
based on the HJM framework.

TERM STRUCTURE MODELS: WHICH IS THE
RIGHT APPROACH FOR OAS?

Numerical schemes are constructive or algorithmic methods for obtaining
practical solutions to mathematical problems. They provide methods for
effectively finding practical solutions to asset pricing PDEs. 

EXHIBIT 12.7      (Continued) 

where µ(t, T, ω) is the random drift term of the forward rate curve, σ(t, T, ω) is the
stochastic volatility function of the forward rate curve and the initial forward rate
curve f(0, t) is taken as a given. Taking the spot rate at time t to be the instantaneous
forward rate at time t that is

we can write

Notice the spot rate equation is similar to the forward-rate process with explicit dif-
ferences in time and maturity arguments.

Issues
■ Difficult to implement
■ Instantaneous forward rate is not a market observable
■ Useful in valuing path-dependent securities such as mortgages
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The first issue in a numerical approach is discretization. The main
objective for discretizing a problem is to reduce it from continuous
parameters formulation to an equivalent discrete parameterization in a
way that makes it amenable to practical solution. In financial valuation,
one generally speaks of a continuous time process in an attempt to find
an analytical solution to a problem; however, nearly all the practical
solutions are garnered by discretizing space and time. Discretization
involves finding numerical approximatizations to the solution at some
given points rather than on a continuous domain. 

Numerical approximation may involve the use of a pattern, lattice,
network, or mesh of discrete points in place of the (continuous) whole
domain, so that only approximate solutions are obtained for the domain
in the isolated points, and other values such as integrals and derivatives
can be obtained from the discrete solution by the means of interpolation
and extrapolation. 

With the discretization of the continuous domain come the issues of
adequacy, accuracy, convergence, and stability. Perhaps how these issues
are faithfully addressed in the implementation of OAS models speaks
directly to the type of results achieved. Although these numerical tech-
niques—lattice methods, finite difference methods, and Monte Carlo
methods—have been used to solve asset pricing PDEs, the lattice and
Monte Carlo methods are more in vogue in OAS implementations.

Lattice Method
The most popular numerical scheme used by financial modelers is the
lattice (or tree) method. A lattice is a nonempty collection of vertices
and edges that represent some prescribed mathematical structures or
properties. The node (vertex) of the lattice carries particular informa-
tion about the evolution of a process that generates the lattice up to that
point. An edge connects the vertices of a lattice. A lattice is initialized at
its root, and the root is the primal node that records the beginning his-
tory of the process.

The lattice model works in a discrete framework and calculates
expected values on a discrete space of paths. A node in a given path of a
nonrecombining lattice distinguishes not only the value of the underly-
ing claim there but also the history of the path up to the node. A bushy
tree represents every path in the state space and can numerically value
path-dependent claims. A node in a given path of a bushy tree distin-
guishes not only the value of the underlying claim there but also the his-
tory of the path to the node. There is a great cost in constructing a
bushy tree model. For example, modeling a 10-year Treasury rate in a
binary bushy tree with each time period equal to one coupon payment
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would require a tree with 220 (1,048,576) paths. Exhibit 12.8 shows a
schematic of a bushy tree.

In a lattice construction, it is usually assumed the time to maturity of
the security, T, can be divided into discrete (finite and equal) time-steps
M, ∆t = T/M. The price of the underlying security is assumed to have a
finite number of “jumps” (or up-and-down movements) N between the
time-steps ∆t. In a recombining lattice, the price or yield of the underly-
ing security is assumed to be affected by N and not the sequences of the
jumps. For computational ease, N is usually set to be two or three; the
case where N = 2 is called binomial lattice (or tree), and N = 3 is the tri-
nomial lattice. Exhibits 12.9 and 12.10 show the binomial and trinomial
lattices, respectively, for the price of a zero-coupon bond.

Monte Carlo Method
The Monte Carlo method is a numerical scheme for solving mathematical
models that involve random sampling. This scheme has been used to solve
problems that are either deterministic or probabilistic in nature. In the
most common application, the Monte Carlo method uses random or
pseudo-random numbers to simulate random variables. Although the
Monte Carlo method provides flexibilities in dealing with a probabilistic
problem, it is not precise especially when one desires the highest level of
accuracy at a reasonable cost and time. 

EXHIBIT 12.8  Bushy or Nonrecombining Tree

Source: First Union Securities, Inc.
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EXHIBIT 12.9  Binomial Lattice for the Price of a Zero-Coupon Bond

Source: First Union Securities, Inc.

EXHIBIT 12.10  Trinomial Lattice for the Price of a Zero-Coupon Bond

Source: First Union Securities, Inc.

Aside from this drawback, the Monte Carlo method has been shown
to offer the following advantages:

 ■ It is useful in dealing with multidimensional problems and boundary
value problems with complicated boundaries.

 ■ Problems with random coefficients, random boundary values, and sto-
chastic parameters can be solved.

 ■ Solving problems with discontinuous boundary functions, nonsmooth
boundaries, and complicated right-hand sides of equations can be
achieved.

The application of the Monte Carlo method in computational finance
is predicated on the integral representation of security prices. The approach
taken consists of the following:
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 ■ Simulating in a manner consistent with a risk-neutral probability
(equivalent martingale) measure the sample path of the underlying
state variables

 ■ Evaluating the discounted payoff of the security on each sample path
 ■ Taking the expected value of the discounted payoff over the entire sam-

ple paths

The Monte Carlo method computes a multidimensional integral—
the expected value of discounted cash flows over the space of sample
paths. For example, let f(x) be an integral function over d-dimensional
unit hypercube, then a simple (or crude) estimate of the integral is equal
to the average value of the function f over n points selected at random
(more appropriately, pseudorandom) from the unit hypercube. By the
law of large numbers,22 the Monte Carlo estimate converges to the value
as n tends to infinity. Moreover, we know from the central limit theorem
that the standard error of estimate tends toward zero as . To
improve on the computational efficiency of the crude Monte Carlo
method, there are several variance-reduction techniques available. These
techniques are discussed in the Appendix. Exhibit 12.11 shows a crude
Monte Carlo simulation of the short-rate process.

EXHIBIT 12.11  A Hypothetical Crude Monte Carlo Simulation of the
Short-Rate Process

Source: First Union Securities, Inc.

22 Strong Law of Large Numbers. Let X = X1, X2 ... be an independent identically
distributed random variable with E(X2) < ∞ then the mean of the sequence up to the
nth term, though itself a random variable, tends as n get larger and larger, to the ex-
pectation of X with probability 1. That is
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IS THERE A RIGHT WAY TO MODEL PREPAYMENTS?

Because cash flows are one of the most important inputs in determining
the value of a security, there has to be a model for cash flow. The cash
flow model consists of a model for distributing the coupon and sched-
uled principal payments to the bondholders, as contained in the deal
prospectus, and a prepayment model that projects unscheduled princi-
pal payments. The basic types of prepayment models are as follows:

 ■ Rational prepayment models. These models apply an option-theoretic
approach and link prepayment and valuation in a single unified frame-
work.

 ■ Econometric prepayment models. This class of models is based on
econometric and statistical analysis.

 ■ Reduced-form prepayment models. This type of model uses past
prepayment rates and other endogenous variables to explain current
prepayment. It fits the observed prepayment data, unrestricted by
theoretical consideration.

The reduced-form prepayment model is the most widely used approach
among dealers and prepayment vendors because of its flexibility and
unrestricted calibration techniques. The basic determinants of the vol-
untary and involuntary components of total prepayments are collateral
and market factors. Collateral factors are the origination date, weighted
average coupon (WAC) and weighted average maturity, and the market-
related factors are benchmark rates and spreads. A simple generalized
version of such a model defines total prepayment (voluntary and invol-
untary) as follows:

TPCPR = turnover + rate-refi + curing + default

This expression is not necessarily a linear function and could get
complicated quickly. It is usually easier to identify a set of model param-
eters and fit its relationship to observed historical prepayment data. For
example, in FUSI proprietary model for a particular category of collat-
eral is defined by specifying the values of numerous parameters that
control the projected effects of various contributions to total prepay-
ments. The control parameters that we identify are

 ■ Seasoning period. The number of months over which base voluntary
prepayments (housing turnover, cash-out refinancing and credit
upgrades but not rate refinancing or defaults) are assumed to increase
to long-term levels.

12-Obazee-BuildingBlocks  Page 338  Thursday, August 29, 2002  9:57 AM

http://abcbourse.ir/


Understanding the Building Blocks for OAS Models 339

 ■ Housing turnover. Turnover is the long-term rate at which borrow-
ers in a pool prepay their mortgages because they sell their homes.

 ■ Default. Default is expressed as a percentage of the PSA Standard
Default Assumption (SDA) or a loss curve.

 ■ Credit curing. This is the long-term rate at which borrowers prepay
their mortgages because improved credit and/or increased home
prices enable them to get better rates and/or larger loans. As the
pool burns out, the rate of curing declines.

 ■ Maximum rate-related conditional prepayment rate (CPR). This
occurs when rates fall below the saturation point for rate-related
financing.

 ■ Maximum rate-related CPR for burnout. The CPR is lower for a
pool that has experienced no prior rate-related refinancing. The
lower the ratio, the faster the pool burns out.

 ■ Refinancing threshold. This is the amount by which the current
market loan rate must fall below the collateral WAC to trigger rate-
related financing.

 ■ Curing threshold. This is the amount by which the current market
loan rate must increase above the collateral WAC to eliminate curing-
related financing.

 ■ Yield curve sensitivity. This sensitivity is the maximum yield curve
correction of rate-related CPR that occurs when the yield curve
slope rises above/falls below the historical average.

 ■ Half-life burnout. This is the time frame in years that a collateral
pool must be fully refinancable to reduce interest rate sensitivity
50% of the way from maximum rate-related CPR to maximum rate-
related CPR for burnout.

To calibrate these parameters, we developed a database of mortgage
loan groups. The collateral groups backing each deal are assigned a pre-
payment model based on the percentile ranking of their initial credit
spread. We define this spread as the collateral WAC minus the Treasury
yield at the time of origination. The rationale for our approach is that
borrowers who pay a higher credit spread tend to be less creditworthy.
Moreover, these borrowers tend to have more opportunities to lower
their rate by curing their credit problem, but they are less able to refi-
nance in response to declining rates. Exhibit 12.12 details the specific
parameter values assigned to each FUSI prepayment model. Exhibit
12.13 shows the aggregate historical CPR versus FUSI’s model projec-
tion for EQCC Home Equity Loan Trust.
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Understanding the Building Blocks for OAS Models 341

EXHIBIT 12.13  Aggregrate Historical CPR versus FUSI Model for 
EQCC Home Equity Loan Trust

CPR: Conditional prepayment rate.
Source: First Union Securities, Inc. (FUSI).

CONCLUSION

In this chapter, we examine some of the foundational issues that explain
(1) why there is a difference in dealers’ OAS values for a specific bond, (2)
what may be responsible for the differences, and (3) why one OAS value
may be more correct than another. As a general guideline, we urge portfo-
lio managers to get familiar with the economic intuitions and basic
assumptions made by the models. We believe the reasonableness of the
OAS values produced by different models should be considered. More-
over, because prepayment options are not traded in the market, calibrat-
ing OAS values using the prices of these options is not possible. With
respect to the basic building block issues, the key points that we made in
this report are as follows:

 ■ Interest rate models, which are closed by precluding arbitrage opportu-
nities, are more tractable and realistic.

 ■ Interest rate models that account for the path-dependent natures of
ABS and MBS cash flows are more robust.

 ■ With the path-dependent natures of ABS and MBS cash flows come
the difficulties of implementation, in particular, the speed of calcula-
tion; the toss-up here is between the lattice and Monte Carlo schemes.
There is a tendency for market participants to believe that because we
are talking about interest rate scenarios, the ideal candidate for the
job would be Monte Carlo techniques, but this should not necessarily
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342 VALUATION MODELS

be the case. Although lattice implementation could do a good job, the
success of this scheme depends highly on ad hoc techniques that have
not been time-tested. Hence, whereas the OAS implementation
scheme is at the crux of what distinguishes good or bad results, the
preferred scheme is an open question that critically depends on avail-
able resources.

 ■ We favor reduced-form prepayment models because of their flexibility
and unrestricted calibration techniques. In particular, a model that
explicitly identifies its control parameters and is amenable to the per-
turbation of these parameters is more robust and transparent.

As a final thought, we rehash two of the questions we asked at the
beginning of this chapter. How do we interpret the differences in deal-
ers’ OAS value for a specific security? On this question, we paraphrase
John Maynard Keynes who said that when news in the market is inter-
preted differently by market participants, then we have a viable market.
In our case, we believe decisions by dealers, vendors, and portfolio man-
agers to choose one interest rate and prepayment model over others and
the different approaches they take in implementing these models largely
account for the wide variance in OAS results, which precipitates a hunt-
for-value mentality that augurs well for the market. Moreover, to com-
plicate the issue, the lack of a market for tradable prepayment options
makes calibrating the resulting OAS values dicey at best. On the ques-
tion of whether there is a correct OAS value for a given security, we say
it is a state of nirvana that we would all treasure. However, we believe
examining the change in OAS value over time, the sensitivity of OAS
parameters, and their implications to relative value analysis are some of
the important indicators of the reasonableness of OAS value.
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APPENDIX: VARIANCE-REDUCTION TECHNIQUES

Antithetic Variates
The most widely used variance-reduction technique in financial modeling
is the antithetic variates. Suppose f has a standard normal distribution,
then by symmetrical property of normal distribution so does −φ. Antithetic
variates involve taking the same set of random numbers but changing their
sign, that is, replacing φ by −φ and simulating the rate paths using φ and −
φ. The antithetic variates technique increases efficiency in pricing options
that depend monotonically on inputs (e.g., average options).

Control Variates
Loosely speaking, the principle behind the control variates technique is
“use what you know.” The idea is to replace the evaluation of unknown
expectations with the evaluation of the difference between the unknown
quantity and another expectation whose value is known. Suppose there is
a known analytical solution to value a security that is similar to the one
we want to simulate. Let the values estimated by Monte Carlo simulation
be  and , respectively. If the accurate value of the known security is
ξ2, then an improved estimate for the value of the simulated security is

−  + ξ2. The notion here is that the error in  will be the same as
error in , and the latter is known.

Moment Matching
Let Xi, i = 1, 2,..., n, be independent standard normals used in a simula-
tion. The sample moment of n X’s will not exactly match those of the
standard normal. The idea of moment matching is to transform the X’s to
match a finite moment of the underlying population. One drawback of
moment matching is that a confidence interval is not easy to obtain.

Stratified and Latin Hypercube Sampling
Stratified sampling seeks to make the inputs to simulation more regular
than random inputs. It forces certain empirical probabilities to match the-
oretical probabilities. The idea is, suppose we want to generate 250 nor-
mal random variates as inputs to a simulation. The empirical distribution
of an independent sample X1, X2, ..., X250 will look roughly like the nor-
mal density. The tails of the distribution—often the most important
part—are underrepresented. Stratified sampling can be used to force
exactly one observation to lie between the (i −1)th and the ith percentile, j
= 1, 2, ..., 250, thus producing a better match to normal distribution. X1,

ξ'1 ξ'2

ξ'1 ξ'2 ξ'1
ξ'2
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344 VALUATION MODELS

X2, ..., X250 are highly dependent, thus complicating the estimation of
standard error. Latin hypercube sampling is a way of randomly sampling
n points of a stratified sample while preserving some of the regularity
property of stratification.

Importance Sampling
The key observation that an expectation under one probability measure
can be expressed as an expectation under another by appealing to the
Radon Nikodym theorem is the foundation for this method. In a Monte
Carlo simulation, the change of measure is used to try to obtain a more
efficient estimator.

Conditional Monte Carlo
A direct consequence of Jensen inequality for condition expectation says
that for any random variables X and Y, Var[E(X|Y) ≤ Var[X]]. In replac-
ing an estimator with its conditional expectation, we reduce variance
essentially because we are doing a part of the integration analytically and
leaving less for Monte Carlo simulation.

Low-Discrepancy Sequences
These sequences use preselected deterministic points for simulation. Dis-
crepancy measures the extent to which the points are evenly dispersed
throughout a region: The more evenly dispersed the points are, the lower
the discrepancy. Low-discrepancy sequences are sometimes called quasi-
random even though they are not random.
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he complication in building a model to value bonds with embedded
options and option-type derivatives is that cash flows will depend on

interest rates in the future. Academicians and practitioners have
attempted to capture this interest rate uncertainty through various mod-
els, often designed as one- or two-factor models. These models attempt
to capture the stochastic behavior of rates.

In practice, these elegant mathematical models must be converted to
numeric applications. Here we focus on one such model—a single factor
model that assumes a stationary variance, or, as it is more often called,
volatility. We demonstrate how to move from the yield curve to a valua-
tion lattice. Effectively, the lattice is a representation of the model, cap-

T
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346 VALUATION MODELS

turing the distribution of rates over time. In our illustration, we will
reduce the lattice to a binomial tree, the most simple lattice form.

The lattice holds all the information required to perform the valua-
tion of certain option-like interest rate products. First, the lattice is used
to generate the cash flows across the life of the security. Next, the inter-
est rates on the lattice are used to compute the present value of those
cash flows.

There are several interest rate models that have been used in prac-
tice to construct an interest rate lattice. These are described in other
chapters. In each case, interest rates can realize one of several possible
rates when we move from one period to the next. A lattice model where
it is assumed that only two rates are possible in the next period is called
a binomial model. A lattice model where it is assumed that interest rates
can take on three possible rates in the next period is called a trinomial
model. There are even more complex models that assume more than
three possible rates in the next period can be realized. 

Regardless of the underlying assumptions, each model shares a com-
mon restriction. The interest rate tree generated must produce a value
for an on-the-run optionless issue that is consistent with the current par
yield curve. In effect, the value output from the model must be equal to
the observed market price for the optionless instrument. Under these
conditions the model is said to be “arbitrage-free.” A lattice that pro-
duces an arbitrage-free valuation is said to be “fair.” The lattice is used
for valuation only when it has been calibrated to be fair. More on cali-
bration below.

In this chapter we will demonstrate how a lattice is constructed. In
Chapter 14, we will use the model to value bonds with an embedded
option and floating-rate securities with option-type derivatives. Later,
the application of the lattice model to value swaptions and forward
start swaps will be demonstrated.

THE INTEREST RATE LATTICE

Exhibit 13.1 provides an example of a binomial interest rate tree, which
consists of a number of “nodes” and “legs.” Each leg represents a one-
year interval over time. A simplifying assumption of one-year intervals
is made to illustrate the key principles. The methodology is the same for
smaller time periods. In fact, in practice the selection of the length of the
time period is critical, but we need not be concerned with this nuance
here.
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EXHIBIT 13.1  Four-Year Binomial Interest Rate Tree

The distribution of future interest rates is represented on the tree by
the nodes at each point in time. Each node is labeled as “N” and has a
subscript, a combination of L’s and H’s. The subscripts indicate whether
the node is lower or higher on the tree, respectively, relative to the other
nodes. Thus, node NHH is reached when the 1-year rate realized in the
first year is the higher of the two rates for that period, then the highest
of the rates in the second year.

The root of the tree is N, the only point in time at which we know
the interest rate with certainty. The 1-year rate today (i.e., at N) is the
current 1-year spot rate, which we denote by r0.

We must make an assumption concerning the probability of reach-
ing one rate at a point in time. For ease of illustration, we have assumed
that rates at any point in time have the same probability of occurring, in
other words, the probability is 50% on each leg.

The interest rate model we will use to construct the binomial tree
assumes that the 1-year rate evolves over time based on a lognormal
random walk with a known (stationary) volatility. Technically, the tree
represents a one-factor model. Under the distributional assumption, the
relationship between any two adjacent rates at a point in time is calcu-
lated via the following equation: 

�

�

� �

� � �

� � � �

� � � �

� � �

� �

�

Today Year 1 Year 2 Year 3 Year 4
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NHHHH

-----------------------•
r3 HHH,

NHHH

-------------------•

r2 HH,

NHH
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r4 HHHL,

NHHHL

----------------------•

r1 H,

NH

-----------•
r3 HHL,

NHHL

------------------•

r0

N
-----•

r2 HL,

NHL

--------------•
r4 HHLL,

NHHLL

---------------------•

r1 L,

NL

----------•
r3 HLL,

NHLL

-----------------•

r2 LL,

NLL
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r4 HLLL,

NHLLL

---------------------•

r3 LLL,

NLLL

-----------------•

r4 LLLL,

NLLLL

--------------------•
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348 VALUATION MODELS

where

 

σ is the assumed volatility of the 1-year rate, t is time in years,
and e is the base of the natural logarithm. Since we assume a 1-year
interval, i.e., t = 1, we can disregard the calculation of the square root of
t in the exponent.

For example, suppose that r1,L is 4.4448% and 

 

σ is 10% per year,
then:

In the second year, there are three possible values for the 1-year
rate. The relationship between r2,LL and the other two 1-year rates is as
follows:

r2,HH = r2,LL(e4

 

σ)   and r2,HL = r2,LL(e2

 

σ)

So, for example, if r2,LL is 4.6958%, and assuming once again that

 

σ is 10%, then

and

This relationship between rates holds for each point in time. Exhibit
13.2 shows the interest rate tree using this new notation.

Determining the Value at a Node
In general, to get a security’s value at a node we follow the fundamental
rule for valuation: The value is the present value of the expected cash
flows. The appropriate discount rate to use for cash flows one year for-
ward is the 1-year rate at the node where we are computing the value.
Now there are two present values in this case: the present value of the
cash flows in the state where the 1-year rate is the higher rate, and one
where it is the lower rate state. We have assumed that the probability of
both outcomes is equal. Exhibit 13.3 provides an illustration for a node
assuming that the 1-year rate is r* at the node where the valuation is
sought and letting:

r1 H, r1 L, e2σ t=

r1 H, 4.4448% e2 0.10×( ) 5.4289%= =

r2 HH, 4.6958% e4 0.10×( ) 7.0053%= =

r2 HL, 4.6958% e2 0.10×( ) 5.7354%= =
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EXHIBIT 13.2  Four-Year Binomial Interest Rate Tree with 1-Year Rates*

EXHIBIT 13.3  Calculating a Value at a Node

VH = the bond’s value for the higher 1-year rate state
VL = the bond’s value for the lower 1-year rate state
C = coupon payment

•
�

•
� �

• • 
� � �

• • 
� � � �

• • • 
� � � �

• • 
� � �

• • 
� �

•
�

•

Today Year 1 Year 2 Year 3 Year 4
* rt is the lowest 1-year rate at each point in time.

Bond’s value in higher-rate
state 1-year forward

�

1-year rate
at node where
bond’s value
is sought

� Cash flow in
higher-rate state

�

� � Cash flow in
lower-rate state�

�

Bond’s value in lower-rate
state 1-year forward
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350 VALUATION MODELS

From where do the future values come? Effectively, the value at any
node depends on the future cash flows. The future cash flows include (1)
the coupon payment one year from now and (2) the bond’s value one
year from now, both of which may be uncertain. Starting the process
from the last year in the tree and working backwards to get the final val-
uation resolves the uncertainty. At maturity, the instrument’s value is
known with certainty—par. The final coupon payment can be deter-
mined from the coupon rate, or from prevailing rates to which it is
indexed. Working back through the tree, we  realize that the value at
each node is quickly calculated. This process of working backward is
often referred to as recursive valuation.

Using our notation, the cash flow at a node is either:

VH + C for the higher 1-year rate

VL + C for the lower 1-year rate

The present value of these two cash flows using the 1-year rate at
the node, r*, is:

Then, the value of the bond at the node is found as follows:

CALIBRATING THE LATTICE

We noted above the importance of the no-arbitrage condition that gov-
erns the construction of the lattice. To assure this condition holds, the
lattice must be calibrated to the current par yield curve, a process we
demonstrate here. Ultimately, the lattice must price optionless par bonds
at par. 

VH C+

1 r*+( )
------------------- present value for the higher 1-year rate=

VL C+

1 r*+( )
------------------- present value for the lower 1-year rate=

Value at a node
1

2
---

VH C+

1 r*+( )
-------------------

VL C+

1 r*+( )
-------------------+=
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EXHIBIT 13.4  Issuer Par Yield Curve

EXHIBIT 13.5  The 1-Year Rates for Year 1 Using the 2-Year 4.2% On-the-Run 
Issue: First Trial

Assume the on-the-run par yield curve for a hypothetical issuer as it
appears in Exhibit 13.4. The current 1-year rate is known, 3.50%.
Hence, the next step is to find the appropriate 1-year rates one year for-
ward. As before, we assume that volatility, σ, is 10% and construct a 2-
year tree using the 2-year bond with a coupon rate of 4.2%, the par rate
for a 2-year security.

Exhibit 13.5 shows a more detailed binomial tree with the cash flow
shown at each node. The root rate for the tree, r0, is simply the current
1-year rate, 3.5%. At the beginning of Year 2 there are two possible 1-
year rates, the higher rate and the lower rate. We already know the rela-
tionship between the two. A rate of 4.75% rate at NL has been arbi-
trarily chosen as a starting point. An iterative process determines the
proper rate (i.e., trial-and-error). The steps are described and illustrated
below. Again, the goal is a rate that, when applied in the tree, provides a
value of par for the 2-year, 4.2% bond.

Maturity Par Rate Market Price

1 year 3.50% 100
2 years 4.20% 100
3 years 4.70% 100
4 years 5.20% 100

• 100.000
NHH 4.2

98.486 �

• 4.2
� NH 5.8017% �

• 99.691 • 100.000
N 3.5000% NHL 4.2

� 99.475 �

• 4.2
NL 4.7500% � • 100.000

NLL 4.2

Today Year 1 Year 2
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Step 1: Select a value for r1. Recall that r1 is the lower 1-year rate.
In this first trial, we arbitrarily selected a value of 4.75%.

Step 2: Determine the corresponding value for the higher 1-year
rate. As explained earlier, this rate is related to the lower
1-year rate as follows: rle

2σ. Since r1 is 4.75%, the higher
1-year rate is 5.8017% (= 4.75% e2×0.10). This value is
reported in Exhibit 13.5 at node NH.

Step 3: Compute the bond value’s one year from now. This value
is determined as follows:
a. Determine the bond’s value two years from now. In our

example, this is simple. Since we are using a 2-year
bond, the bond’s value is its maturity value ($100) plus
its final coupon payment ($4.2). Thus, it is $104.2.

b. Calculate VH. Cash flows are known. The appropriate
discount rate is the higher 1-year rate, 5.8017% in our
example. The present value is $98.486 (= $104.2/
1.058017).

c. Calculate VL. Again, cash flows are known—the same
as those in Step 3b. The discount rate assumed for the
lower 1-year rate is 4.75%. The present value is
$99.475 (= $104.2/1.0475).

Step 4: Calculate V.
a. Add the coupon to both VH and VL to get the cash flow

at NH and NL, respectively. In our example we have
$102.686 for the higher rate and $103.675 for the
lower rate.

b. Calculate V. The 1-year rate is 3.50%. (Note: At this
point in the valuation, r* is the root rate, 3.50%).
Therefore, $99.691 = ¹�₂($99.214 + $100.169)

Step 5: Compare the value in Step 4 to the bond’s market value. If
the two values are the same, then the rl used in this trial is
the one we seek. If, instead, the value found in Step 4 is not
equal to the market value of the bond, this means that the
value rl in this trial is not the 1-year rate that is consistent
with the current yield curve. In this case, the five steps are
repeated with a different value for rl.
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EXHIBIT 13.6  The 1-Year Rates for Year 1 Using the 2-Year 4.2% On-the-Run Issue

When rl is 4.75%, a value of $99.691 results in Step 4, which is less
than the observed market price of $100. Therefore, 4.75% is too large
and the five steps must be repeated trying a lower rate for rl.

Let’s jump right to the correct rate for rl in this example and rework
steps 1 through 5. This occurs when rl is 4.4448%. The corresponding
binomial tree is shown in Exhibit 13.6. The value at the root is equal to
the market value of the 2-year issue (par).

We can “grow” this tree for one more year by determining r2. Now
we will use the 3-year on-the-run issue, the 4.7% coupon bond, to get
r2. The same five steps are used in an iterative process to find the 1-year
rates in the tree two years from now. Our objective is now to find the
value of r2 that will produce a bond value of $100. Note that the two
rates one year from now of 4.4448% (the lower rate) and 5.4289% (the
higher rate) do not change. These are the fair rates for the tree 1-year
forward.

The problem is illustrated in Exhibit 13.7. The cash flows from the
3-year, 4.7% bond are in place. All we need to perform a valuation are
the rates at the start of Year 3. In effect, we need to find r2 such that the
bond prices at par. Again, an arbitrary starting point is selected, and an
iterative process produces the correct rate.

The completed version of Exhibit 13.7 is found in Exhibit 13.8. The
value of r2, or equivalently r2,LL, which will produce the desired result is
4.6958%. The corresponding rates r2,HL and r2,HH would be 5.7354%
and 7.0053%, respectively. To verify that these are the correct 1-year

• 100.000

NHH 4.2

98.834 �

• 4.2

�NH 5.4289% �

• 100.000 • 100.000

N 3.5000% NHL 4.2

� 99.766 �

• 4.2

NL 4.4448% � • 100.000

NLL 4.2

Today Year 1 Year 2
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rates two years from now, work backwards from the four nodes at the
right of the tree in Exhibit 13.8. For example, the value in the box at
NHH is found by taking the value of $104.7 at the two nodes to its right
and discounting at 7.0053%. The value is $97.846. Similarly, the value
in the box at NHL is found by discounting $104.70 by 5.7354% and at
NLL by discounting at 4.6958%. 

USING THE LATTICE FOR VALUATION

To illustrate how to use the lattice for valuation purposes, consider a
6.5% option-free bond with four years remaining to maturity. Since this
bond is option-free, it is not necessary to use the lattice model to value it.
All that is necessary to obtain an arbitrage-free value for this bond is to
discount the cash flows using the spot rates obtained from bootstrapping
the yield curve shown in Exhibit 13.4. The spot rates are as follows:

EXHIBIT 13.7  Information for Deriving the 1-Year Rates for Year 2 Using the 3-
Year 4.7% On-the-Run Issue

1-year 3.5000%
2-year 4.2147%
3-year 4.7345%
4-year 5.2707%

• 100.000
? � NHHH 4.7

• 4.7
? � NHH ? �

• 4.7 • 100.000
? � NH 5.4289% � ? � NHHL 4.7

• • 4.7
N 3.5000% � ? � NHL ? �

• 4.7 • 100.000
NL 4.4448% � ? � NHLL 4.7

• 4.7
NLL ? �

• 100.000
NLLL 4.7

Today Year 1 Year 2 Year 3
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EXHIBIT 13.8  The 1-Year Rates for Year 2 Using the 3-Year 4.7% On-the-Run Issue

Discounting the 6.5% 4-year option-free bond with a par value of
$100 at the above spot rates would give a bond value of $104.643.

Exhibit 13.9 contains the fair tree for a four-year valuation. Exhibit
13.10 shows the various values in the discounting process using the lat-
tice in Exhibit 13.9. The root of the tree shows the bond value of
$104.643, the same value found by discounting at the spot rate. This
demonstrates that the lattice model is consistent with the valuation of
an option-free bond when using spot rates.

In Chapter 14, we apply the lesson here to more complex instru-
ments, those with option features that require the lattice-based process
for proper valuation. The methodology is applied to swaptions in Chap-
ter 15. Regardless of the security or derivative to be valued, the genera-
tion of the lattice follows the same no-arbitrage principles outlined here.
Subsequently, cash flows are determined at each node, the recursive val-
uation process undertaken to arrive at fair values. Hence, a single lattice
and a valuation process prove to be robust means for obtaining fair val-
ues for a wide variety of fixed-income instruments.

• 100.000

97.846 � NHHH 4.7

• 4.7

97.823 � NHH 7.0053% �

• 4.7 • 100.000

100.000 � NH 5.4289% � 99.021 � NHHL 4.7

• • 4.7

N 3.5000% � 99.777 � NHL 5.7354% �

• 4.7 • 100.000

NL 4.4448% � 100.004 � NHLL 4.7

• 4.7

NLL 4.6958% �

• 100.000

NLLL 4.7

Today Year 1 Year 2 Year 3

13-FKD-YldCurvesValLatt  Page 355  Thursday, August 29, 2002  9:56 AM

http://abcbourse.ir/


356 VALUATION MODELS

EXHIBIT 13.9  Binomial Interest Rate Tree for Valuing Up to a 4-Year Bond for 
Issuer (10% Volatility Assumed)

EXHIBIT 13.10  Valuing an Option-Free Bond with Four Years to Maturity and 
a Coupon Rate of 6.5% (10% Volatility Assumed)

• 9.1987%
� NHHH

• 7.0053%
� NHH �

• 5.4289% • 7.5312%
� NH � � NHHL

• 3.5000% • 5.7354%
N � � NHL �

• 4.4448% • 6.1660%
NL � � NHLL

• 4.6958%
NLL �

• 5.0483%
NLLL

Today Year 1 Year 2 Year 3

Computed value
Coupon
Short-term rate (r*)

• 100.000
97.529 � NHHHH 6.5

• 6.5
97.925 � NHHH 9.1987% �

• 6.5 • 100.000
100.230 � NHH 7.0053% � 99.041 � NHHHL 6.5

• 6.5 • 6.5
104.643 � NH 5.4289% � 100.418 � NHHL 7.5312% �

• • 6.5 • 100.000
N 3.5000% � 103.381 � NHL 5.7354% � 100.315 � NHHLL 6.5

• 6.5 • 6.5
NL 4.4448% � 102.534 � NHLL 6.1660% �

• 6.5 • 100.000
NLL 4.6958% � 101.382 � NHLLL 6.5

• 6.5
NLLL 5.0483% �

• 100.000
NLLLL 6.5

Today Year 1 Year 2 Year 3 Year 4
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n Chapter 13 it was explained how a lattice can be constructed. Further,
it was stated that the lattice provides a robust means for the valuation of

a number of fixed-income securities and derivatives. In this chapter, we
demonstrate how a lattice can be used to value a variety of fixed- and
floating-rate coupon instruments and interest rate derivatives. In addition,
we extend the application of the interest rate tree to the calculation of the
option adjusted spread (OAS), as well as the effective duration and convex-
ity of a fixed-income instrument. We begin with fixed-coupon bonds.

I
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FIXED-COUPON BONDS WITH EMBEDDED OPTIONS

The valuation of bonds with embedded options proceeds in the same fash-
ion as in the case of an option-free bond. However, the added complexity
of an embedded option requires an adjustment to the cash flows on the
tree depending on the structure of the option. A decision on whether to
call or put must be made at nodes on the tree where the option is eligible
for exercise. Examples for both callable and putable bonds follow.

Valuing a Callable Bond
In the case of a call option, the call will be made when the present value
(PV) of the future cash flows is greater than the call price at the node
where the decision to exercise is being made. Effectively, the following
calculation is made:

Vt = Min [Call Price, PV(Future Cash Flows)]

where Vt represents the PV of future cash flows at the node, notation
analogous to that in Chapter 13. This operation is performed at each
node where the bond is eligible for call.

For example, consider a 6.5% bond with four years remaining to
maturity that is callable in one year at $100. We will value this bond, as
well as the other instruments in this chapter, using a binomial tree.
Exhibit 14.1 is the binomial interest rate tree that was derived in Chap-
ter 13 and then used to value an option-free bond. In constructing the
binomial tree in Exhibit 14.1, it is assumed that interest rate volatility is
10%. This binomial tree will be used throughout this chapter.

Exhibit 14.2 shows two values are now present at each node of the
binomial tree. The discounting process (explained in Chapter 13) is used
to calculate the first of the two values at each node. The second value is
the value based on whether the issue will be called. Again, the issuer
calls the issue if the PV of future cash flows exceeds the call price. This
second value is incorporated into the subsequent calculations.

In Exhibit 14.3, certain nodes from Exhibit 14.2 are highlighted. Panel
(a) of the exhibit shows nodes where the issue is not called (based on the
simple call rule used in the illustration) in year 2 and year 3.1 The values
reported in this case are the same as in the valuation of an option-free
bond. Panel (b) of the exhibit shows some nodes where the issue is called
in year 2 and year 3. Notice how the methodology changes the cash flows.
In year 3, for example, at node NHLL the recursive valuation process pro-
duces a PV of 100.315. However, given the call rule, this issue would be

1 We assume cash flows occur at the end of the year.
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called. Therefore, 100 is shown as the second value at the node and it is
this value that is then used as the valuation process continues. Taking the
process to its end, the value for this callable bond is 102.899.

The value of the call option is computed as the difference between
the value of an optionless bond and the value of a callable bond. In our
illustration, the value of the option-free bond is 104.643 (Calculated in
Chapter 13.). The value of the callable bond is 102.899. Hence, value of
the call option is 1.744 (= 104.634 

 

− 102.899).

Valuing a Putable Bond
A putable bond is one in which the bondholder has the right to force the
issuer to pay off the bond prior to the maturity date. The analysis of the
putable bond follows closely that of the callable bond. In the case of the
putable, we must establish the rule by which the decision to put is made.
The reasoning is similar to that for the callable bond. If the PV of the
future cash flows is less than the put price (i.e., par), then the bond will
be put. In equation form,

Vt = Max (Put Price, PV(Future Cash Flows)]

Exhibit 14.4 is analogous to Exhibit 13.3. It shows the binomial
tree with the values based on whether or not the investor exercises the
put option at each node. The bond is putable any time after the first
year at par. The value of the bond is 105.327. Note that the value is
greater than the value of the corresponding option-free bond.

EXHIBIT 14.1  Binomial Interest Rate Tree for Valuing Up to a 4-Year Bond for 
Issuer (10% Volatility Assumed)

• 9.1987%

�

� NHHH
• 7.0053%

�

� NHH

�

�

• 5.4289% • 7.5312%

�

� NH

�

� � NHHL
• 3.5000% • 5.7354%

N

�

� � NHL

�

�

• 4.4448% • 6.1660%
NL

�

� � NHLL
• 4.6958%

NLL

�

�

• 5.0483%
NLLL

Today Year 1 Year 2 Year 3
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EXHIBIT 14.2  Valuing a Callable Bond with Four Years to Maturity, a Coupon 
Rate of 6.5%, and Callable after the First Year at 100 (10% Volatility Assumed)

EXHIBIT 14.3  Highlighting Nodes in Years 2 and 3 for a Callable Bond
a. Nodes Where Call Option is Not Exercised

Computed value
Call price if exercised; 

computed value if not exercised
Coupon
Short-term rate (r*)

• 100.000
N

 

HHHH 6.5
97.529

�

�

• 97.529
N

 

HHH 6.5
97.925

�

� 9.1987%

�

�

• 97.925 • 100.000
N

 

HH 6.5 N

 

HHHL 6.5
100.032

�

� 7.0053%

�

� 99.041

�

�

• 100.000 • 99.041
N

 

H 6.5 N

 

HHL 6.5

�

� 5.4289%

�

� 100.270

�

� 7.5312%

�

�

• 102.899 • 100.000 • 100.000
N 3.5000% N

 

HL 6.5 N

 

HHLL 6.5

�

� 101.968

�

� 5.7354%

�

� 100.315

�

�

• 100.000 • 100.000
N

 

L 6.5 N

 

HLL 6.5
4.4448%

�

� 101.723

�

� 6.1660%

�

�

• 100.000 • 100.000
N

 

LL 6.5 N

 

HLLL 6.5
4.6958%

�

� 101.382

�

�

• 100.000
N

 

LLL 6.5
5.0483%

�

�

• 100.000
N

 

LLLL 6.5
Today Year 1 Year 2 Year 3 Year 4

97.529
• 97.529

N

 

HHH 6.5
97.925

�

� 9.1987%
• 97.925

N

 

HH 6.5
7.0053%

�

� 99.041
• 99.041

N

 

HHL 6.5
7.5312%

Year 2 Year 3
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EXHIBIT 14.3      (Continued)
b. Selected Nodes Where the Call Option is Exercised

EXHIBIT 14.4  Valuing a Putable Bond with Four Years to Maturity, a Coupon Rate 
of 6.5%, and Putable after the First Year at 100 (10% Volatility Assumed)

100.315
• 100.000

N

 

HLL 6.5
101.723

�

� 6.1660%
• 100.000

N

 

LL 6.5
4.6958%

�

� 101.382
• 100.000

N

 

LLL 6.5
5.0483%

Year 2 Year 3

Computed value
Put price if exercised; computed value if not exercised
Coupon • 100.000
Short-term rate (r*) 97.529

�

�N

 

HHHH 6.5
• 100.000

99.528

�

� N

 

HHH 6.5
• 100.000 9.1987%

�

� • 100.000
101.429

�

� N

 

HH 6.5 N

 

HHHL 6.5
• 101.429 7.0053%

�

� 99.041

�

�

N

 

H 6.5 • 100.000

�

� 5.4289%

�

� 100.872

�

� N

 

HHL 6.5
• 105.327 • 100.872 7.5312%

�

� • 100.000
N 3.5000% NHL 6.5 N

 

HHLL 6.5

�

� 103.598

�

� 5.7354%

�

� 100.315

�

�

• 103.598 • 100.315
NL 6.5 102.534� NHLL 6.5

4.4448% � • 102.534 6.1660%� • 100.000
NLL 6.5 NHLLL 6.5

4.6958%� 101.382�
• 101.382

NLLL 6.5
5.0483%� • 100.000

NLLLL 6.5

Today Year 1 Year 2 Year 3 Year 4
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362 VALUATION MODELS

With the two values in hand, we can calculate the value of the put
option. Since the value of the putable bond is 105.327 and the value of
the corresponding option-free bond is 104.643, the value of the embed-
ded put option purchased by the investor is effectively 0.684.

Suppose that a bond is both putable and callable. The procedure for
valuing such a structure is to adjust the value at each node to reflect
whether the issue would be put or called. Specifically, at each node there
are two decisions about the exercising of an option that must be made.
If it is called, the value at the node is replaced by the call price. The val-
uation procedure then continues using the call price at that node. If the
call option is not exercised at a node, it must be determined whether or
not the put option will be exercised. If it is exercised, then the put price
is substituted at that node and is used in subsequent calculations.

FLOATING-COUPON BONDS WITH EMBEDDED OPTIONS

Simple discounted cash flow methods of analysis fail to handle floaters with
embedded or option-like features that have been introduced in recent years.
In this section we demonstrate how to use the lattice model to value (1) a
capped floater, and (2) a callable capped floater. We will streamline the
notation used in the binomial tree for the exhibits in this section.

Valuing Capped Floating-Rate Bonds
Consider a floating-rate bond with a coupon indexed to the 1-year rate
(the reference rate) plus a spread. For our purposes, assume a 25 bp
spread to the reference rate. The coupon adjusts at each node to reflect
the level of the reference rate plus the spread. 

Using the same valuation method as before, we can find the value at
each node. Recall the value of the bond is 100 (par) at the end of year 4.
Consider NHLL.

Stepping back one period

Following this same procedure, we arrive at the price of 100.893.2

How would this change if the interest rate on the bond were capped?

2 We leave this calculation to the reader.

NHLL
1
2
--- 100 6.416+

1.06166
------------------------------- 100 6.416+

1.06166
-------------------------------+ 100.235= =

NLL
1
2
--- 100.235 4.9458+

1.046958
---------------------------------------------- 100.238 4.9458+

1.046958
----------------------------------------------+ 100.465= =
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EXHIBIT 14.5  Valuation of a Capped Floating-Rate Bond

EXHIBIT 14.6  Spread to Index to Price Cap at Par

Assume that the cap is 7.25%. In Exhibit 14.5, we’ve taken the tree
from Exhibit 14.1 and, as was the case with the optionless fixed-coupon
bond, at each node we’ve entered the cash flow expected at the end of
each period based on the reset formula. As rates move higher there is a
possibility that the current reference rate exceeds the cap. Such is the case
at NHHH and NHHL. The coupon is subject to the following constraint:

Index: 1-year rate 98.215
Cap (%): 7.25 • 107.2500
Spread (bps): 25.00 99.273 � NHHH 9.1987

• 7.2500
99.998 � NHH 7.0053 � 99.738

• 5.6789 • 107.2500
100.516 � NHH 5.4289 � 100.224 � NHHL 7.5312

• 3.7500 • 5.9854
N 3.5000 � 100.569 � NHL 5.7354 � 100.235

• 4.5648 • 106.4160
NLL 4.4448 � 100.465 � NHLL 6.1660

• 4.9458
NLL 4.6958 � 100.238

• 105.2983
NLLL 5.0483

Today Year 1 Year 2 Year 3
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Ct = Min [rt,7.25%]

As a result of the cap, the value of the bond in the upper nodes at t
= 3 falls below par. For example,

Valuing recursively through the tree, we arrive at the current value
of the capped floater, 100.516 a value lower than the plain-vanilla
floater. This last calculation gives us a means for pricing the embedded
option. Without a cap, the bond is priced at 100.893. The difference
between these two prices is the value of the cap, 0.377. It is important
to note that the price of the cap is volatility dependent. Any change in
the volatility would result in a different valuation for the cap. The
greater the volatility, the higher the price of the option, and vice versa.

We can extend the application of the lattice to the initial pricing of
securities. What if an issuer wanted to offer this bond at par? In such a
case, an adjustment has to be made to the coupon. To lower the price
from 100.516 to par, a lower spread over the reference rate is offered to
investors. It turns out that this is not enough. Exhibit 14.6 shows the
relationship between the spread over the 1-year reference rate and the
bond price. At a spread of 8.70 bps over the 1-year reference rate, the
capped floater in Exhibit 14.5 will be priced at par. Again, the spread of
8.7 bps is volatility dependent.

Callable Capped Floating-Rate Bonds
Now consider a call option on the capped floater. As was the case for a
fixed-coupon bond, we must be careful to specify the appropriate rules
for calling the bond on the valuation tree. It turns out that the rule is the
same for floaters and fixed-coupon bonds. Any time the bond has a PV
above par at a node where the bond is callable, the bond will be called.
(Here we assume a par call to simplify the illustration.)

Before we get into the details, it is important to motivate the need
for a call on a floating-rate bond. The value of a cap to the issuer
increases as market rates near the cap and there is the potential for rates
to exceed the cap prior to maturity. As rates decline, so does the value of
the cap. The problem for the issuer in the event of low rates is the addi-
tional basis-point spread it is paying for a cap that now has little or no
value. Thus, when rates decline, a call has value to the issuer because it
can call and reissue at a different spread. 

NHHH
1
2
--- 100 7.25+

1.091987
---------------------------- 100 7.25+

1.09198
----------------------------+ 98.215= =
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Suppose that the capped floater is callable at par anytime after the first
year. Exhibit 14.7 provides details on the effect of the call option on valu-
ation of the capped floater. Again, for a callable bond, when the PV
exceeds par in a recursive valuation model, the bond is called. In the case
of our 4-year bond, you can see that the value of the bond at nodes NLL,
NLLH, and NLLL is now 100, the call price. The full effect of the call
option on price is evident with today’s price for the bond moving to
99.9140.

The byproduct of this analysis is the value of the call option on a
capped floater. We now have the fair value of the capped floater versus
the callable capped floater. So, the call option has a value of 100.516 −
100.189 = 0.327.

How would one structure the issue so that it is priced at par? We
have to offer a lower spread over the floating rate than the holder is
already receiving for accepting the cap. In this case, we need to move
the total spread over the one-year floating rate to 13.37 bps. Exhibit
14.8 shows the relationship between spread and value.

VALUING CAPS AND FLOORS

An interest rate cap is nothing more than a package or strip of options.
More specifically, a cap is a strip of European options on interest rates.
Thus, to value a cap, the value of each period’s cap, called a caplet, is
found and all the caplets are then summed.

To illustrate how this is done, we will once again use the binomial
tree given in Exhibit 14.1 to value a cap. Consider a 5.2% 3-year cap
with a notional amount of $10 million. The reference rate is the 1-year
rate. The payoff for the cap is annual.

The three panels in Exhibit 14.9 show how this cap is valued by val-
uing the three caplets. The value for the caplet for any year, say Year X,
is found as follows. First, calculate the payoff in Year X at each node as
either:

1. zero if the 1-year rate at the node is less than or equal to 5.2%, or
2. the notional amount of $10 million times the difference between the 1-

year rate at the node and 5.2% if the 1-year rate at the node is greater
than 5.2%.

Then, the recursive valuation process is used to determine the value
of the Year X caplet.
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EXHIBIT 14.8  Spread to Index to Price Callable Cap at Par

EXHIBIT 14.9  Valuation of a 3-Year 5.2% Cap (10% Volatility Assumed)

Assumptions
Cap rate: 5.2%
Notional amount: $10,000,000
Payment frequency: Annual

Panel A: The Value of the Year 1 Caplet

Value of Year 1 caplet = $11,058

Panel B: The Value of the Year 2 Caplet

Value of Year 2 caplet = $66,009

• 22,890
NH 5.4289%

• 11,058 �
N 3.5000% �

• 0
NL 4.4448%

Today Year 1

• 180,530
NHH 7.0053%

• 111,008 �
NH 5.4289% �

• 66,009 � • 53,540
N 3.5000% � NHL 5.7354%

• 25,631 �
NL 4.4448% �

• 0
NLL 4.6958%

Today Year 1 Year 2
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EXHIBIT 14.9     (Continued)

Panel C: The Value of the Year 3 Caplet

Value of Year 3 caplet = $150,214

Summary: Value of 3-Year Cap = $11,058 + $66,009 + $150,214 = $227,281
Note on calculations: Payoff in last box of each exhibit is

For example, consider the Year 3 caplet. At the top node in Year 3
of Panel (c) of Exhibit 14.9, the 1-year rate is 9.1987%. Since the 1-year
rate at this node exceeds 5.2%, the payoff in Year 3 is:

$10,000,000 × (0.091987 − 0.052) = $399,870

For node NHH we look at the value for the cap at the two nodes to
its right, NHHH and NHHL. Discounting the values at these nodes,
$399,870 and $233,120, by the interest rate from the binomial tree at
node NHH, 7.0053%, we arrive at a value of $295,755. That is,

The values at nodes NHH and NHL are discounted at the interest
rate from the binomial tree at node NH, 5.4289%, and then the value is
computed. That is, 

• 399,870
NHHH 9.1987%

• 295,775 �

NHH 7.0053% �

• 214,217 � • 233,120
NH 5.4289% � NHHL 7.5312%

• 150,214 � • 155,918 �

N 3.5000% � NHL 5.7354% �

• 96,726 � • 96,600
NL 4.4448% � NHLL 6.1660%

• 46,134 �

NLL 4.6958% �

• 0
NLLL 5.0483%

Today Year 1 Year 2 Year 3

$10,000,000 Maximum Rate at node 5.2%– 0,( )[ ]×

Value at NHH $399,870 1.070053( )⁄ $233,120 1.070053( )+[ ] 2⁄=

$295,775=

Value at NH $295,775 1.054289( )⁄ $155,918 1.054289( )⁄+[ ] 2⁄=

$214,217=
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Finally, we get the value at the root, node N, which is the value of
the Year 3 caplet found by discounting the value at NH and NL by 3.5%
(the interest rate at node N). Doing so gives:

Value at N = [$214,217/(1.035) + $96,726/(1.035)]/2 = $150,214

Following the same procedure, the value of the Year 2 caplet is
$66,009 and the value of the Year 1 caplet is $11,058. The value of the
cap is then the sum of the three caplets.

Thus, the value of the cap is $227,281, found by adding $11,058,
$66,009, and $150,214.

The valuation of an interest rate floor is done in the same way.

VALUATION OF TWO MORE EXOTIC STRUCTURES

The lattice-based recursive valuation methodology is robust. To further
support this claim, we address the valuation of two more exotic struc-
tures—the step-up callable note and the range floater.

Valuing a Step-Up Callable Note
Step-up callable notes are callable instruments whose coupon rate is
increased (i.e., “stepped up”) at designated times. When the coupon rate
is increased only once over the security’s life, it is said to be a single
step-up callable note. A multiple step-up callable note is a step-up call-
able note whose coupon is increased more than one time over the life of
the security. Valuation using the lattice model is similar to that for valu-
ing a callable bond described above except that the cash flows are
altered at each node to reflect the coupon characteristics of a step-up
note.

Suppose that a 4-year step-up callable note pays 4.25% for two
years and then 7.5% for two more years. Assume that this note is call-
able at par at the end of Year 2 and Year 3. We will use the binomial
tree given in Exhibit 14.1 to value this note.

Exhibit 14.10 shows the value of the note if it were not callable.
The valuation procedure is the now familiar recursive valuation from
Exhibit 14.2. The coupon in the box at each node reflects the step-up
terms. The value is 102.082. Exhibit 14.11 shows that the value of the
single step-up callable note is 100.031. The value of the embedded call
option is equal to the difference in the optionless step-up note value and
the step-up callable note value, 2.051.
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EXHIBIT 14.12  Coupon Schedule (Bands) for a Range Note

EXHIBIT 14.13  Valuation of a 3-Year Range Floater

Now we move to another structure where the coupon floats with a
reference rate, but is restricted. In this next case, a range is set in which
the bond pays the reference rate when the rate falls within a specifed
range, but outside the range no coupon is paid.

Valuing a Range Note
A range note is a security that pays the reference rate only if the rate
falls within a band. If the reference rate falls outside the band, whether
the lower or upper boundary, no coupon is paid. Typically, the band
increases over time.

To illustrate, suppose that the reference rate is, again, the 1-year
rate and the note has 3 years to maturity. Suppose further that the band
(or coupon schedule) is defined as in Exhibit 14.12. Exhibit 14.13 holds
our tree and the cash flows expected at the end of each year. Either the
1-year reference rate is paid, or nothing. In the case of this 3-year note,
there is only one state in which no coupon is paid. Using our recursive
valuation method, we can work back through the tree to the current
value, 98.963.

Year 1 Year 2 Year 3

Lower Limit 3.00% 4.00% 5.00%
Upper Limit 5.00% 6.25% 8.00%

100.000
• 107.0053

100.000 � NHH 7.0053
• 5.4289

98.963 � NHH 5.4289 � 100.000
• 3.5000 • 105.7354

N 3.5000 � 97.853 � NHL 5.7354
• 4.4448

NLL 4.4448 � 95.515
• 100.0000

NLL 4.6958
Year 0 Year 1 Year 2
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EXHIBIT 14.14  Issuer Par Yield Curve

VALUING AN OPTION ON A BOND

Thus far we have seen how the lattice can be used to value bonds with
embedded options. The same tree can be used to value a stand-alone
option on a bond.

To illustrate how this is done, consider a 2-year American call
option on a 6.5% 2-year Treasury bond with a strike price of 100.25
which will be issued two years from now. We will assume that the on-
the-run Treasury yields are those represented in Exhibit 14.14. Within
the binomial tree we find the value of the Treasury bond at each node.
Exhibit 14.15 shows the value of our hypothetical Treasury bond
(excluding coupon interest) at each node at the end of Year 2.

The decision rule at a node for determining the value of an option on a
bond depends on whether or not the call or put option being valued is in
the money. Moreover, the exercise decision is only applied at the expiration
date. That is, a call option will be exercised at the option’s expiration date
if the bond’s value at a node is greater than the strike price. In the case of a
put option, the option will be exercised if the strike price at a node is
greater than the bond’s value (i.e., if the put option is in the money). 

Three values for the underlying 2-year bond are shown in Exhibit 14.15:
97.925, 100.418, and 102.534. Given these three values, the value of a call
option with a strike price of 100.25 can be determined at each node. For
example, if in Year 2 the price of this Treasury bond is 97.925, then the value
of the call option would be zero. In the other two cases, since the value at the
end of Year 2 is greater than the strike price, the value of the call option is
the difference between the price of the bond at the node and 100.25.

Given these values, the binomial tree is used to find the present
value of the call option using recursive valuation. The discount rates are
the now familiar one-year forward rates from the binomial tree. The
expected value at each node for Year 1 is found by discounting the call
option value from Year 2 using the rate at the node. Move back one
more year to “Today.” The value of the option is $0.6056.

The same procedure is used to value a put option. 

Maturity Par Rate Market Price

1 year 3.50% 100
2 years 4.20% 100
3 years 4.70% 100
4 years 5.20% 100
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EXTENSIONS

We next demonstrate how to compute the option-adjusted spread, effec-
tive duration, and the convexity for a fixed-income instrument with an
embedded option.

Option-Adjusted Spread
We have concerned ourselves with valuation to this point. However,
financial market transactions determine the actual price for a fixed-
income instrument, not a series of calculations on an interest rate lat-
tice. If markets are able to provide a meaningful price (usually a func-
tion of the liquidity of the market in which the instrument trades), this
price can be translated into an alternative measure of value, the option-
adjusted spread (OAS).

The OAS for a security is the fixed spread (usually measured in
basis points) over the benchmark rates that equates the output from the
valuation process with the actual market price of the security. For an
optionless security, the calculation of OAS is a relatively simple, itera-
tive process. The process is much more analytically challenging with
the added complexity of optionality. And, just as the value of the
option is volatility dependent, the OAS for a fixed-income security with
embedded options or an option-like interest rate product is volatility
dependent.

Recall our illustration in Exhibit 14.2, where the value of a callable
bond was calculated as 102.899. Suppose that we had information from
the market that the price is actually 102.218. We need the OAS that
equates the value from the lattice with the market price. Since the mar-
ket price is lower than the valuation, the OAS is a positive spread to the
rates in the exhibit, rates which we assume to be benchmark rates.

The solution in this case is 35 basis points, which is incorporated
into Exhibit 14.16 that shows the value of the callable bond after add-
ing 35 basis points to each rate. The simple, binomial tree provides evi-
dence of the complex calculation required to determine the OAS for a
callable bond. In Exhibit 14.2, the bond is called at NHLL. However,
once the tree is shifted 35 bps in Exhibit 14.16, the PV of future cash
flows at NHLL falls below the call price to 99.985, so the bond is not
called at this node. Hence, as the lattice structure grows in size and
complexity, the need for computer analytics becomes obvious.

Effective Duration and Effective Convexity
Duration and convexity provide a measure of the interest rate risk
inherent in a fixed-income security. We rely on the lattice model to cal-
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376 VALUATION MODELS

culate the effective duration and effective convexity of a bond with an
embedded option and other option-like securities. The formula for these
two risk measures are given below:

EXHIBIT 14.16  Demonstration that the Option-Adjusted Spread is 35 Basis Points 
for a 6.5% Callable Bond Selling at 102.218 (Assuming 10% Volatility)

* Each 1-year rate is 35 basis points greater than in Exhibit 14.2.

Computed value
Call price if exercised; 

computed value if not exercised
Coupon
Short-term rate (r*)

• 100.000
NHHHH 6.5

97.217 �
• 97.217

NHHH 6.5
97.311 � 9.5487% �

• 97.311 • 100.000
NHH 6.5 NHHHL 6.5

99.307 � 7.3553% � 98.720 �
• 99.307 • 98.720

NH 6.5 NHHL 6.5
� 5.7789% � 99.780 � 7.8812% �

• 102.218 • 99.780 • 100.000
N 3.8500% NHL 6.5 NHHLL 6.5

� 101.522 � 6.0854% � 99.985 �
• 100.000 • 99.985

NL 6.5 NHLL 6.5
4.7948% � 101.377 � 6.5160% �

• 100.000 • 100.000
NLL 6.5 NHLLL 6.5

5.0458% � 101.045 �
• 100.000

NLLL 6.5
5.3983% �

• 100.000
NLLLL 6.5

Today Year 1 Year 2 Year 3 Year 4

Effective duration
V– V+–

2V0 r∆( )
---------------------=

Effective convexity
V+ V– 2V0–+

2V0 r∆( )2
-------------------------------------=

14-FKD-UsingLatticeModel  Page 376  Thursday, August 29, 2002  10:00 AM

http://abcbourse.ir/


Using the Lattice Model to Value Bonds with Embedded Options, Floaters, Options, and Caps/Floors 377

where V− and V+ are the values derived following a parallel shift in the
yield curve down and up, respectively, by a fixed spread. The model
adjusts for the changes in the value of the embedded call option that
result from the shift in the curve in the calculation of V− and V+.

Note that the calculations must account for the OAS of the security.
Below we provide the steps for the proper calculation of V+. The calcu-
lation for V− is analogous.

Step 1: Given the market price of the issue, calculate its OAS.

Step 2: Shift the on-the-run yield curve up by a small number of
basis points (∆r).

Step 3: Construct a binomial interest rate tree based on the new
yield curve from Step 2.

Step 4: Shift the binomial interest rate tree by the OAS to obtain an
“adjusted tree.” That is, the calculation of the effective duration and
convexity assumes a constant OAS.

Step 5: Use the adjusted tree in Step 4 to determine the value of the
bond, V+.

We can perform this calculation for our 4-year callable bond with a
coupon rate of 6.5%, callable at par selling at 102.218. We computed
the OAS for this issue as 35 basis points. Exhibit 14.17 holds the
adjusted tree following a shift in the yield curve up by 25 basis points,
and then adding 35 basis points (the OAS) across the tree. The adjusted
tree is then used to value the bond. The resulting value, V+ is 101.621.

To determine the value of V−, the same five steps are followed except
that in Step 2, the on-the-run yield curve is shifted down by a small num-
ber of basis points (∆r). It can be demonstrated that for our callable bond,
the value for V− is 102.765.

The results are summarized below:

Therefore,

∆r = 0.0025
V+ = 101.621
V– = 102.765
V0 = 102.218

effective duration 102.765 101.621–
2 102.218( ) 0.0025( )
----------------------------------------------------- 2.24= =
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EXHIBIT 14.17  Determination of V+ for Calculating Effective Duration and 
Convexity*

* +25 basis point shift in on-the-run yield curve.

Notice that this callable bond exhibits negative convexity.

• 100.000
NHHHH 6.5

96.911 �
• 96.911

NHHH 6.5
96.770 � 9.8946% �

• 96.770 • 100.000
NHH 6.5 NHHHL 6.5

98.575 � 7.6633% � 98.461 �
• 98.575 • 98.461

NH 6.5 NHHL 6.5
� 6.0560% � 99.320 � 8.1645% �

• 101.621 • 99.320 • 100.000
N 4.1000% NHL 6.5 NHHLL 6.5

� 101.084 � 6.3376% � 99.768 �
• 100.000 • 99.768

NL 6.5 NHLL 6.5
5.0217% � 101.075 � 6.7479% �

• 100.000 • 100.000
NLL 6.5 NHLLL 6.5

5.2523% � 100.864 �
• 100.000

NLLL 6.5
5.5882% �

• 100.000
NLLLL 6.5

Effective convexity
101.621 102.765 2 102.218( )–+

2 102.218( ) 0.0025( )2
-------------------------------------------------------------------------------------- 39.1321–= =
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n this chapter we will demonstrate how to value forward start swaps and
swaptions using the lattice model described in the previous chapters.1 We

begin with a description of interest rate swaps and how they are valued.

BASICS OF AN INTEREST RATE SWAP

In an interest rate swap, two parties agree to exchange interest payments
at specified future dates. The dollar amount of the interest payments
exchanged is based on the notional principal or notional amount. The
payment each party pays to the other is the agreed-upon periodic interest

1 A more comprehensive treatment of the subject is provided in Gerald W. Buetow,
Jr. and Frank J. Fabozzi, Valuation of Interest Rate Swaps and Swaptions (New
York, NY: John Wiley & Sons, 2001).

I
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rate times the notional principal. The only dollars that are exchanged
between the parties are the interest payments, not the notional principal.

In the most common type of swap, one party agrees to pay the other
party fixed interest payments at designated dates for the life of the con-
tract. This party is referred to as the fixed-rate payer. The fixed rate that
the fixed-rate payer must make is called the swap fixed rate or swap rate.
The other party, who agrees to make payments that float with some refer-
ence rate (for example, LIBOR), is referred to as the fixed-rate receiver.
The fixed-rate payer is also referred to as the floating-rate receiver and the
fixed-rate receiver is also called the floating-rate payer. The type of swap
that we have just described is called a plain vanilla swap.

The payments between the parties are usually netted. We shall refer to
this netted payment between the two parties as the cash flow for the swap
for the period. We note that throughout the literature the terms “swap pay-
ments” and “cash flows” are used interchangeably. However, in this chap-
ter we will use the term swap payments to mean the payment made by a
counterparty before any netting and cash flow to mean the netted amount.

The convention that has evolved for quoting a swap fixed rate is that
a dealer sets the floating rate equal to the reference rate and then quotes
the swap fixed rate that will apply. The swap fixed rate is some “spread”
above the Treasury yield curve with the same term to maturity as the
swap. This spread is called the swap spread.

There are swaps where the notional principal changes in a predeter-
mined manner over time. A swap in which the notional principal declines
over the life of the swap is called an amortizing swap. A swap in which
the notional principal increases over the life of the swap is called an
accreting swap. A roller coaster swap is a swap where the notional princi-
pal can increase or decrease from the previous period. While the illustra-
tions presented throughout this chapter assume a constant notional
principal, the valuation framework is equally applicable to swaps with a
changing notional principal.

Risk/Return Profile of the Swap Counterparties
The value of an interest rate swap will fluctuate with market interest
rates. How the value of a swap changes for each party to a swap is sum-
marized below:

Change in Swap Value if Rates

Party Increase Decrease

Fixed-rate payer Increases Decreases
Floating-rate receiver Decreases Increases
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Interpreting a Swap
A swap can be viewed in terms of more basic interest rate derivatives: for-
ward rate agreements. Specifically, a swap can be viewed as a package of for-
ward contracts. Let’s contrast the position of the counterparties in an interest
rate swap to the position of a long and short interest rate forward position.
The short forward position gains if interest rates decline and loses if interest
rates rise. This is similar to the risk/return profile for a fixed-rate receiver. The
risk/return profile for a fixed-rate payer is similar to that of a long forward
position: There is a gain if interest rates increase and a loss if interest rates
decrease. By taking a closer look at an interest rate swap we can understand
why the risk/return profiles are similar.

Consider a swap in which the swap fixed rate is 6%, the payments are
swapped quarterly, the notional principal is $100 million, and the refer-
ence rate is 3-month LIBOR. The fixed-rate payer has agreed to buy a
commodity called “3-month LIBOR” for $1.5 million each quarter (6%
times $100 million divided by 4). This is effectively a 3-month forward
contract where the fixed-rate payer agrees to pay $1.5 million in exchange
for delivery of 3-month LIBOR. If interest rates increase to 7%, the price
of that commodity (3-month LIBOR) in the market is higher, resulting in a
gain for the fixed-rate payer, who is effectively long a 3-month forward
contract on 3-month LIBOR. The fixed-rate receiver is effectively short a
3-month forward contract on 3-month LIBOR. There is therefore an
implicit forward contract corresponding to each exchange date.

Now we can see why there is a similarity between the risk/return pro-
file for an interest rate swap and a forward contract. If interest rates
increase to, say, 7%, the price of that commodity (3-month LIBOR)
increases to $1.75 million (7% times $100 million divided by 4). The long
forward position (the fixed-rate payer) gains, and the short forward posi-
tion (the fixed-rate receiver) loses. If interest rates decline to, say, 5%, the
price of our commodity decreases to $1.25 million (5% times $100 mil-
lion divided by 4). The short forward position (the fixed-rate receiver)
gains, and the long forward position (the fixed-rate payer) loses.

This is an important interpretation of a swap because the pricing of a
swap will then depend on the price of a package of forward contracts with
the same settlement dates in which the underlying for the forward contract
is the same reference rate. We will make use of this principle below.

VALUING AN INTEREST RATE SWAP

In order to be able to value swap products such as a forward start swap
and a swaption, it is first necessary to understand how the value of a
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plain vanilla swap is determined. To value a swap it is necessary to
determine the present value of the fixed payments and the present value
of the floating payments. The difference between these two present val-
ues is the value of a swap. Whether the value is positive (i.e., an asset)
or negative (i.e., a liability) will depend on whether the party is the
fixed-rate payer or the fixed-rate receiver. 

Calculating the Swap’s Floating Payments
Since the floating rate is set at the beginning of the period, the first float-
ing payment is known. For all subsequent payments, the floating pay-
ments depend on the value of the reference rate when the floating rate is
determined. To illustrate the issues associated with calculating the float-
ing payment, we will assume that

 

 ■ A swap starts today, January 1 of year 1 (swap settlement date).

 

 ■ The floating payments are made quarterly based on “actual/360.”

 

 ■ The reference rate is 3-month LIBOR.

 

 ■ The notional principal of the swap is $100.

 

 ■ The term of the swap is five years (20 payments).

The quarterly floating payments are based on an “actual/360” day
count convention.2 The floating payment is set at the beginning of the quar-
ter but paid at the end of the quarter—that is, the floating payments are
made in arrears. In general, the floating payment is determined as follows:

There is no uncertainty about the floating payment that will be
received by the fixed-rate payer in the first quarter. The difficulty is in
determining the floating payments after the first quarterly payment. That
is, for the 3-year swap there will be 12 quarterly floating payments. So,
while the first quarterly payment is known, the next 11 are not. However,
there is a way to hedge the next 11 floating payments by using a futures
contract. Specifically, the futures contract used to hedge the future float-
ing payments in a swap whose reference rate is 3-month LIBOR is the
Eurodollar CD futures contract.

The 3-month Eurodollar CD is the underlying instrument for the
Eurodollar CD futures contract. The contract is for $1 million of face
value and is traded on an index price basis. The index price basis in which

2 This convention means that 360 days are assumed in a year and that in computing
the interest for the quarter, the actual number of days in the quarter are used.

notional principal 3-month LIBOR( )× number of days in period
360

-----------------------------------------------------------------×
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the contract is quoted is equal to 100 minus the annualized LIBOR
futures rate. For example, a Eurodollar CD futures price of 93.00 means
a 3-month LIBOR futures rate of 7% (100 minus 93.00 divided by 100).
The Eurodollar CD futures contract is a cash settlement contract. That is,
the parties settle in cash for the value of a Eurodollar CD based on
LIBOR at the settlement date.

The Eurodollar CD futures contract allows the buyer of the contract
to lock in the rate on 3-month LIBOR today for a future 3-month period.
For example, suppose that on February 1 an investor purchases a Euro-
dollar CD futures contract that settles in March of the same year. Assume
that the LIBOR futures rate for this contract is 7%. This means that the
investor has agreed to invest in a 3-month Eurodollar CD that pays a rate
of 7%. Specifically, the investor has locked in a rate for a 3-month invest-
ment of 7% beginning in March. If the investor on February 1 purchased
a contract that settles in September of the following year and the LIBOR
futures rate is 7.4%, the investor has locked in the rate on a 3-month
investment beginning September of the following year.

From the perspective of the seller of a Eurodollar CD futures con-
tract, the seller is agreeing to lend funds for three months at some future
date at the LIBOR futures rate. For example, suppose on February 1 a
bank sells a Eurodollar CD futures contract that settles in March of the
same year and the LIBOR futures rate is 7%. The bank locks in a borrow-
ing rate of 7% for three months beginning in March of that year. If the
settlement date is September of the following year and the LIBOR futures
rate is 7.4%, the bank is locking in a borrowing rate of 7.4% for the 3-
month period beginning September of the following year.

The key point here is that the Eurodollar CD futures contract allows
a hedge to lock in a 3-month rate on an investment or a 3-month borrow-
ing rate. The 3-month period begins in the month that the contract settles.

Now let’s return to our objective of determining the future floating
payments. These payments can be locked in over the life of the swap
using the Eurodollar CD futures contract. We will show how these float-
ing payments are computed using this contract.

We will begin with the next quarterly payment—from April 1 of year
1 to June 30 of year 1. This quarter has 91 days. The floating payment
will be determined by 3-month LIBOR on April 1 of year 1 and paid on
June 30 of year 1. There is a 3-month Eurodollar CD futures contract for
settlement on June 30 of year 1. That futures contract will have the mar-
ket’s expectation of what 3-month LIBOR on April 1 of year 1 is. For
example, if the futures price for the 3-month Eurodollar CD futures con-
tract that settles on June 30 of year 1 is 93.055, then as explained above,
the 3-month Eurodollar futures rate is 6.945%. We will refer to that rate
for 3-month LIBOR as the “forward rate.” Therefore, if the fixed-rate

15-Buetow/Fabozzi-Lattice  Page 383  Thursday, August 29, 2002  9:59 AM

http://abcbourse.ir/


384 VALUATION MODELS

payer bought one of these 3-month Eurodollar CD futures contracts on
January 1 of year 1 (the inception of the swap) that settles on June 30 of
year 1, then the payment that will be locked in for the quarter (April 1 to
June 30 of year 1) is 

Similarly, the Eurodollar CD futures contract can be used to lock in a
floating payment for each of the next 10 quarters. It is important to
remember that the reference rate at the beginning of period t determines
the floating-rate that will be paid for the period. However, the floating
payment is not made until the end of period t, denoted t + 1. 

Exhibit 15.1 shows this for the 5-year swap. Shown in Column (1) is
when the quarter begins and in Column (2) when the quarter ends. The
payment will be received at the end of the first quarter (March 31 of year 1)
and is $1.74625. That is the known floating payment as explained earlier. It
is the only payment that is known. The information used to compute the
first payment is in Column (4) which shows the current 3-month LIBOR
(6.99%). The payment is shown in the last column, Column (8). 

Notice that Column (7) numbers the quarters from 1 through 20.
Look at the heading for Column (7). It identifies each quarter in terms of
the end of the quarter. This is important because we will eventually be
discounting the payments. We must take care to understand when each
payment is to be exchanged in order to properly discount. So, the first
payment of $1.74625 it is going to be received at the end of quarter 1.
When we refer to the time period for any payment, the reference is to the
end of quarter. So, the fifth payment of $1.7367 would be identified as the
payment for period 5, where period 5 means that it will be exchanged at
the end of the fifth quarter.

Computing the Present Value of the Floating Payments
At the initiation of an interest rate swap, the counterparties are agreeing
to exchange future payment and no upfront payment by either party is
made. This means that the swap terms must be such that the present
value of the payments to be made by the counterparties must be at least
equal to the present value of the payments that will be received. In fact,
to eliminate arbitrage opportunities, the present value of the payments
made by a party must be equal to the present value of the payments
received by that same party. The equivalence (or no arbitrage) of the
present value of the payments is the key principle in calculating the
swap rate. Here we will demonstrate how to compute the present value
of the fixed and floating payments for a swap.

$100 0.06945× 91
360
----------×
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We must be careful about how we compute the present value of the
swap payments. In particular, we must carefully specify (1) the timing of
the payment and (2) the interest rates that should be used to discount the
payments. We addressed the first issue earlier. In constructing the exhibit
for the payments, we indicated that the payments are at the end of the
quarter. So, we denoted the timing of the payments with respect to the
end of the quarter.

Let’s look at the interest rates that should be used for discounting.
To do so we draw on two important principles from financial theory.
First, every cash flow should be discounted at its own discount rate
using a spot rate. So, if we discounted a cash flow of $1 using the spot
rate for period t, the present value would be:

The second principle is that forward rates are derived from spot
rates so that if we discounted a cash flow using forward rates rather
than a spot rate, we would come up with the same value. That is, the
present value of $1 to be received in period t can be rewritten as:

where fi = forward rate for period i.
We will refer to the present value of $1 to be received in period t as

the forward discount factor. In our calculations involving swaps, we will
compute the forward discount factor for a period using the forward rates.
These are the same forward rates that are used to compute the floating
payments—those obtained from the Eurodollar CD futures contract. 

We must make just one more adjustment. We must adjust the for-
ward rates used in the formula for the number of days in the period (i.e.,
the quarter in our illustrations) in the same way that we made this
adjustment to obtain the payments. Specifically, the forward rate for a
period, which we will refer to as the period forward rate, is computed
using the following equation:

present value of $1 to be received in period t $1
1 spot rate for period t+( )t

---------------------------------------------------------------------=

present value of $1 to be received in period t $1
1 f1+( ) 1 f2+( )… 1 ft+( )

----------------------------------------------------------------=

period forward rate annual forward rate

number of
days in period

360
------------------------------------

 
 
 

×=
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Using the Lattice Model to Value Forward Start Swaps and Swaptions 387

Column (5) in Exhibit 15.2 shows the annual forward rate for all 20
periods and Column (6) shows the period forward rate for all 20 peri-
ods. (Note that the period forward rate for period 1 is 90/360 of 6.99%,
which is 90/360 of the known rate for 3-month LIBOR.) Also shown in
Exhibit 15.2 is the forward discount factor for all 20 periods. These val-
ues are shown in the last column. 

Given the floating payment for a period and the forward discount
factor for the period, the present value of the payment can be computed.
Exhibit 15.3 shows the present value for each payment. The total
present value of the 20 floating payments is $29.61893. Thus, the
present value of the payments that the fixed-rate payer will receive is
$29.61893 and the present value of the payments that the fixed-rate
receiver will make is $29.61893. 

EXHIBIT 15.2  Calculating the Forward Discount Factor

(1) (2) (3) (4) (5) (6) (7)

Quarter
Starts

Quarter
Ends

Number
of

Days in
Quarter

End of 
Quarter

Forward
Rate

Period
Forward

Rate

Forward
Discount
Factor

  1/1/YR1   3/31/YR1 90   1 6.99% 1.7463% 0.98284
  4/1/YR1   6/30/YR1 90   2 6.94% 1.7363% 0.96606
  7/1/YR1   9/30/YR1 91   3 6.97% 1.7606% 0.94935
10/1/YR1 12/31/YR1 91   4 6.97% 1.7619% 0.93291
  1/1/YR2   3/31/YR2 89   5 7.03% 1.7367% 0.91699
  4/1/YR2   6/30/YR2 90   6 6.97% 1.7438% 0.90127
  7/1/YR2   9/30/YR2 91   7 6.99% 1.7657% 0.88563
10/1/YR2 12/31/YR2 91   8 6.99% 1.7657% 0.87027
  1/1/YR3   3/31/YR3 89   9 7.05% 1.7429% 0.85536
  4/1/YR3   6/30/YR3 90 10 7.01% 1.7513% 0.84064
  7/1/YR3   9/30/YR3 91 11 7.03% 1.7758% 0.82597
10/1/YR3 12/31/YR3 91 12 7.04% 1.7783% 0.81154
  1/1/YR4   3/31/YR4 89 13 7.11% 1.7565% 0.79753
  4/1/YR4   6/30/YR4 90 14 7.07% 1.7675% 0.78368
  7/1/YR4   9/30/YR4 91 15 7.10% 1.7947% 0.76986
10/1/YR4 12/31/YR4 91 16 7.13% 1.8010% 0.75624
  1/1/YR5   3/31/YR5 90 17 7.21% 1.8025% 0.74285
  4/1/YR5   6/30/YR5 90 18 7.18% 1.7938% 0.72976
  7/1/YR5   9/30/YR5 91 19 7.21% 1.8225% 0.71670
10/1/YR5 12/31/YR5 91 20 7.25% 1.8314% 0.70381
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Present Value of the Fixed Payments
In our illustration we will assume that the frequency of settlement is
quarterly for the fixed payments, the same as with the floating pay-
ments. The day count convention is the same as for the floating pay-
ment, “actual/360.” The equation for determining the dollar amount of
the fixed payment for the period is:

It is the same equation as for determining the floating payment except
that the swap fixed rate is used instead of the reference rate (3-month
LIBOR in our illustration).

EXHIBIT 15.3  Present Value of the Floating Payments

(1) (2) (3) (4) (5) (6)

Quarter
Starts

Quarter
Ends

End of 
Quarter

Forward
Discount
Factor

Floating
Payment at

End of Quarter

PV of 
Floating
Payments

  1/1/YR1   3/31/YR1   1 0.982837 1.746250 1.716279
  4/1/YR1   6/30/YR1   2 0.966064 1.736250 1.677328
  7/1/YR1   9/30/YR1   3 0.949350 1.760597 1.671422
10/1/YR1 12/31/YR1   4 0.932913 1.761861 1.643663
  1/1/YR2   3/31/YR2   5 0.916987 1.736736 1.592565
  4/1/YR2   6/30/YR2   6 0.901271 1.743750 1.571592
  7/1/YR2   9/30/YR2   7 0.885634 1.765653 1.563723
10/1/YR2 12/31/YR2   8 0.870268 1.765653 1.536592
  1/1/YR3   3/31/YR3   9 0.855360 1.742917 1.490821
  4/1/YR3   6/30/YR3 10 0.840638 1.751250 1.472168
  7/1/YR3   9/30/YR3 11 0.825971 1.775764 1.466730
10/1/YR3 12/31/YR3 12 0.811540 1.778292 1.443154
  1/1/YR4   3/31/YR4 13 0.797531 1.756514 1.400874
  4/1/YR4   6/30/YR4 14 0.783679 1.767500 1.385153
  7/1/YR4   9/30/YR4 15 0.769862 1.794722 1.381689
10/1/YR4 12/31/YR4 16 0.756242 1.801042 1.362024
  1/1/YR5   3/31/YR5 17 0.742852 1.802500 1.338991
  4/1/YR5   6/30/YR5 18 0.729762 1.793750 1.309011
  7/1/YR5   9/30/YR5 19 0.716700 1.822528 1.306206
10/1/YR5 12/31/YR5 20 0.703811 1.831375 1.288941

Total 29.61893    

notional principal swap fixed rate( )× number of days in period
360

-----------------------------------------------------------------×
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Exhibit 15.4 shows the fixed payments based on the swap fixed rate
(SFR) of 7.0513%. The first three columns of the exhibit show the same
information as in Exhibit 15.1—the beginning and end of the quarter and
the number of days in the quarter. Column (4) simply uses the notation
for the period. That is, period 1 means the end of the first quarter, period
2 means the end of the second quarter, and so on. Column (5) shows the
fixed payments for each period based on a swap fixed rate of 7.0513%.

The present value of the fixed payments can be computed. To be
consistent with the computing of the present value of the floating pay-
ments, the same discount rates are used. It can be demonstrated that if
the fixed payments shown in the last column of Exhibit 15.4 are com-
puted using the period forward rates (and therefore forward discount
rates) shown in Exhibit 15.3, the present value of the fixed payments
will be $29.61893. 

The swap value is the difference between the present value of the
floating payment and the present value of the fixed payments. In our

EXHIBIT 15.4  Fixed Payments Assuming a Swap Fixed Rate of 7.0513%

(1) (2) (3) (4) (5)

Quarter
Starts

Quarter
Ends

Number of Days
in Quarter

End of
Quarter

Fixed
Payment

  1/1/YR1   3/31/YR1 90   1 1.762825
  4/1/YR1   6/30/YR1 90   2 1.762825
  7/1/YR1   9/30/YR1 91   3 1.782412
10/1/YR1 12/31/YR1 91   4 1.782412
  1/1/YR2   3/31/YR2 89   5 1.743238
  4/1/YR2   6/30/YR2 90   6 1.762825
  7/1/YR2   9/30/YR2 91   7 1.782412
10/1/YR2 12/31/YR2 91   8 1.782412
  1/1/YR3   3/31/YR3 89   9 1.743238
  4/1/YR3   6/30/YR3 90 10 1.762825
  7/1/YR3   9/30/YR3 91 11 1.782412
10/1/YR3 12/31/YR3 91 12 1.782412
  1/1/YR4   3/31/YR4 89 13 1.743238
  4/1/YR4   6/30/YR4 90 14 1.762825
  7/1/YR4   9/30/YR4 91 15 1.782412
10/1/YR4 12/31/YR4 91 16 1.782412
  1/1/YR5   3/31/YR5 90 17 1.762825
  4/1/YR5   6/30/YR5 90 18 1.762825
  7/1/YR5   9/30/YR5 91 19 1.782412
10/1/YR5 12/31/YR5 91 20 1.782412
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swap, at the inception of the swap, the two values are equal ($29.61893)
so the swap value is zero as it should be, so that neither party compen-
sates the other in order to enter into the swap. In fact, the swap rate is
determined by finding the interest rate that would produce fixed payments
whose present value is equal to the present value of the floating payments. 

Changes in Swap Value after Inception
After the inception date, market interest rates change and it is therefore
necessary to determine how the value of the swap changes. Changes in
market interest rates will change the payments of the floating-rate leg of
the swap. The value of an interest rate swap is the difference between
the present value of the payments of the two legs of the swap. The 3-
month LIBOR forward rates from the current Eurodollar CD futures
contracts are used to:

 

 ■ calculate the floating payments and 

 

 ■ determine the discount factors at which to calculate the present value
of the payments

To illustrate this, consider the hypothetical 5-year swap. Suppose that
two years later, interest rates change as shown in Columns (4) and (6) in
Exhibit 15.5. Column (4) shows the current 3-month LIBOR. In Column
(5) are the Eurodollar CD futures prices for each period. These rates are
used to compute the forward rates in Column (6). Note that the interest
rates have increased two years later since the rates in Exhibit 15.5 are
greater than those in Exhibit 15.1. The current 3-month LIBOR and the
forward rates are used to compute the floating-rate payments. 

In addition to using the new forward rates to obtain the floating
payments, the new forward rates in Exhibit 15.5 are used to compute
the period forward rates and new forward discount factors. Column (3)
of Exhibit 15.6 shows the new forward discount factors.

We now have all the information needed to calculate the value of the
swap. In Exhibit 15.6 the forward discount factors and the floating pay-
ments (from Exhibit 15.5) are shown. The fixed payments need not be
recomputed. They are the payments shown in Column (8) of Exhibit
15.4. These are the fixed payments based on the initial swap rate of
7.0513%. Now the two payment streams must be discounted using the
new forward discount factors. As shown at the bottom of Exhibit 15.6,
the two present values are as follows: 

Present value of floating payments $19.12716
Present value of fixed payments $18.97279
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The two present values are not equal and therefore for one party the
value of the swap increased and for the other party the value of the swap
decreased. The fixed-rate payer will receive the floating payments. These
payments have a present value of $19.12716. The present value of the
payments that must be made by the fixed-rate payer is $18.97279. Thus,
the swap has a positive value for the fixed-rate payer equal to the differ-
ence in the two present values of $0.15437. This is the value of the swap
to the fixed-rate payer. In contrast, the fixed-rate receiver must make pay-
ments with a present value of $19.12716 but will only receive fixed pay-
ments with a present value equal to $18.97279 Thus, the value of the
swap for the fixed-rate receiver is 

 

−$0.15437.

USING THE LATTICE MODEL TO VALUE A PLAIN VANILLA SWAP

The lattice model is needed to value more complex swaps such as forward
start swaps and swaptions. Before we show how, let’s see how the lattice
model can be used to value a plain vanilla swap. We will use the binomial
model for this purpose.

As explained earlier, in valuing the cash flows of a swap (i.e., the dif-
ference between the payments received and payments paid for each
period) an arbitrage value for these cash flows is obtained by discounting
at the forward rates implied from the Eurodollar CD futures contracts, or
equivalently, the spot rates implied from the Eurodollar CD futures con-
tracts. The first complication in building a model to value more complex
swaps is that the future cash flows will depend on what happens to inter-
est rates in the future. This means that future interest rate movements
must be considered. This is incorporated into a valuation model by con-
sidering how interest rates can change based on some assumed interest
rate volatility. Given the assumed interest rate volatility, an interest rate
lattice representing possible future interest rates consistent with the vola-
tility assumption can be constructed. It is from the interest rate lattice
that two important elements in the valuation process are obtained. First,
the interest rates in the lattice are used to generate the cash flows for the
swap given the swap terms. Second, the interest rates in the lattice are
used to compute the present value of the cash flows.

The Binomial Interest Rate Lattice
In valuing more complex swaps, we will see that consideration must be
given to interest rate volatility. This can be done by introducing an
interest rate lattice. This lattice is nothing more than a graphical depic-
tion of the one-period or short-term interest rates over time based on
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394 VALUATION MODELS

some assumption about interest rate volatility. How this lattice is con-
structed is described in Chapter 13.

To demonstrate swap valuation using the lattice model, we will use
the following swap:

swap term: 5 years
cash flows for fixed and floating: semiannual
notional principal: $100
swap fixed rate (SFR) = 7.0513%

Notice that a swap with semiannual payments is used. This is done
just to simplify the illustration. Another simplifying assumption is that
each semiannual period has the same number of days.

We will assume the forward rates shown in Exhibit 15.7 in our illustra-
tion. Following the procedure explained in Chapter 13, Exhibit 15.8 shows
the binomial interest rate lattice for valuing any swap using the forward
rates in Exhibit 15.7 and assuming annual interest rate volatility is 10%.

From the interest rate lattice, the cash flow at each node is computed.
Let’s use the semiannual pay swap to illustrate how to get each cash flow.
From the perspective of the fixed-rate payer, the cash flow at a node is
found using the following formula:

(Fi,j-1 − SFR) × NPj × 0.5

EXHIBIT 15.7  Assumed Forward Rates for 5-Year Swap

 (1) (2) (3) (4) (5)

Period
Starts

Period
Ends

Forward
Rate

Floating Payment at
End of Period

Forward
Discount Factors

1/1 YR1   6/30 YR1 6.96% 3.482499754 0.966346969
7/1 YR1 12/31 YR1 6.97% 3.483749998 0.933815183
1/1 YR2   6/30 YR2 7.00% 3.500000067 0.902236891
7/1 YR2 12/31 YR2 6.99% 3.492500025 0.871789638
1/1 YR3   6/30 YR3 7.03% 3.513750789 0.842196936
7/1 YR3 12/31 YR3 7.03% 3.515000816 0.813598927
1/1 YR4   6/30 YR4 7.09% 3.543754086 0.785753747
7/1 YR4 12/31 YR4 7.11% 3.556255474 0.758769949
1/1 YR5   6/30 YR5 7.19% 3.596265167 0.732429830
7/1 YR5 12/31 YR5 7.23% 3.613768418 0.706884656

Total 8.313822725

15-Buetow/Fabozzi-Lattice  Page 394  Thursday, August 29, 2002  9:59 AM

http://abcbourse.ir/


395

EX
HI

BI
T 

15
.8

 S
em

ia
nn

ua
l N

o-
A

rb
it

ra
ge

 I
nt

er
es

t 
R

at
e 

L
at

ti
ce

 f
ro

m
 E

ur
od

ol
la

r 
Fu

tu
re

s 
Pr

ic
es

13
.4

58
4%

12
.4

90
2%

11
.5

20
7%

11
.6

83
6%

10
.7

10
2%

10
.8

43
1%

9.
91

25
%

10
.0

01
3%

10
.1

42
8%

9.
24

77
%

  9
.2

97
7%

  9
.4

13
1%

8.
57

98
%

8.
60

53
%

  8
.6

82
4%

  8
.8

05
2%

8.
02

72
%

8.
02

82
%

  8
.0

71
6%

  8
.1

71
7%

7.
46

06
%

7.
44

84
%

7.
47

05
%

  7
.5

37
4%

  7
.6

44
0%

   
   

6.
96

50
%

6.
96

86
%

6.
96

94
%

  7
.0

07
1%

  7
.0

94
1%

6.
47

67
%

6.
46

61
%

6.
48

53
%

  6
.5

43
4%

  6
.6

35
9%

6.
04

96
%

6.
05

03
%

  6
.0

83
1%

  6
.1

58
5%

5.
61

34
%

5.
63

00
%

  5
.6

80
5%

  5
.7

60
8%

5.
25

24
%

  5
.2

80
8%

  5
.3

46
4%

4.
88

76
%

  4
.9

31
4%

  5
.0

01
1%

  4
.5

84
4%

  4
.6

41
3%

  4
.2

81
0%

  4
.3

41
6%

  4
.0

29
2%

  3
.7

69
0%

T
im

e 
in

 Y
ea

rs
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0
4.

5

15-Buetow/Fabozzi-Lattice  Page 395  Thursday, August 29, 2002  9:59 AM

http://abcbourse.ir/


396 VALUATION MODELS

where

In the above expression 0.5 is the daycount (semiannual in this case,
0.25 for quarterly, and so on) approximation. 

For the fixed-rate receiver, the cash flow is:

(SFR − Fi,j-1) × NPj × 0.5

Exhibit 15.9 shows the cash flows for the fixed-rate payer in our
swap using the rates in Exhibit 15.8. For example, let’s see how we get the
cash flow in year 5 (CF5) for the node where rates increase each period.
We know from Exhibit 15.9:

Fi,j-1 = F0,9 = F0,4.5 years = 13.4584%

Then

(13.4584% − 7.0513%) × 100 × 0.5 = 3.2036

This is the value shown in Exhibit 15.9. 
The valuation of this swap is shown in Exhibit 15.10. We will refer

to this lattice as the cumulative swap valuation lattice. Using the cash
flow lattice given by Exhibit 15.9, each node shows the present value of
all the nodes that take place after it. For example, take the middle node
at year 3.0 in Exhibit 15.10 (i = 3, j = 6) where the value of 0.0576 is
shown. This represents the cumulative present value of all the cash flows
that feed into that node plus the cash flow that corresponds to that node
at the 3-year point. To see how this is done, let’s perform the following
backward induction exercise to see how we arrive at 0.0576.

The values at year 4.5 are simply the discounted value of the cash
flows at year 5.0 (CF5):

Fi,j-1 = the rate corresponding to the floating rate at node (i,
j−1) that dictates the arrears cash flow at j. j − 1 means
that the cash flow at j is determined by the forward
rate at j − 1. (For example, F3,7 is the forward rate
that corresponds to period 7 (3.5 in years) and fourth
from the top node (i = 0, 1, 2, 3) or 7.5374%.)

NPj = the notional principal at j. The notional principal can
change to whatever value is necessary (they are all
constant for this plain vanilla swap).

  0.8769/(1+8.8052%/2) =   0.8400
  0.2964/(1+7.6440%/2) =   0.2854
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Using the Lattice Model to Value Forward Start Swaps and Swaptions 399

The values at year 4.0 are going to be the discounted values of the
values at year 4.5 plus the discounted value of arrears cash flows that take
place at year 4.5 (CF4.5). In other words, these are the cumulative swap
values at year 4.0:

(0.5 × 0.8400 + 0.5 × 0.2854 + 0.5602)/(1 + 8.1717%/2) = 1.0789 

(0.5 × 0.2854 + 0.5 × −0.2010 + 0.0214)/(1 + 7.0941%/2) = 0.0614

(0.5 × (−0.2010) + 0.5 × (−0.6272) + (−0.4464))/(1 + 6.1585%/2) 
= −0.8348

The values at year 3.5 are going to be the discounted values of the
values at year 4.0 plus the discounted value of arrears cash flows that take
place at year 4.0 (CF4.0). In other words, these are the cumulative swap
values at year 3.5:

(0.5 × 1.0789 + 0.5 × 0.0614 + 0.2431)/(1 + 7.5374%/2) = 0.7837

(0.5 × 0.0614 + 0.5 × (−0.8348) + (−0.2539))/(1 + 6.5434%/2) = −0.6203

Finally, to arrive at the middle node at year 3.0, we perform the anal-
ogous computation:

(0.5 × 0.7837 + 0.5 × (−0.6203) + (−0.0221))/(1 + 7.0071%/2) = 0.0576

One important feature of the above process should be noted. The
discount rate is the floating rate that is used to compute the arrears cash
flow. For example the 7.0071% is the rate that computes the −0.0221 (=
(7.0071% − 7.0513%) × 100 × 0.5). This will always be the case—this
approach allows us not to have to show 10 different lattices to value the
swap (and later to value a swaption). The alternative would be to
present a separate lattice for each cash flow and discount it back using
backward induction and then add them all together at the point where
valuation is desired. Using this approach combines all the lattices into
one and is easy to follow. We will also see later that this approach
enables tremendous versatility in the valuation of forward start swaps
and swaptions, as well as swaps that do not pay in arrears. 

While in our illustration we valued a swap at inception that has a
value of zero, the procedure for valuing a swap after rates change (i.e.,

−0.2077/(1+6.6359%/2) = −0.2010
−0.6452/(1+5.7608%/2) = −0.6272
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400 VALUATION MODELS

valuing an off market swap) is the same. First, given the new Eurodollar
CD futures prices, new forward rates are determined. Given the forward
rates, a new interest rate lattice is generated. Then the swap (given its
remaining term) is valued using the new interest rate lattice.

To illustrate this, let’s look at our hypothetical swap two years later.
Exhibit 15.11 shows the valuation of this swap two years later assuming
the forward rates in Columns (3) and (6) in panel a. The balance of the
exhibit shows how to value the swap without a lattice using the proce-
dure described earlier. The value of the swap is shown in panel d. The
lattice approach should provide the same value for the swap.

EXHIBIT 15.11  Valuing a Swap Two Years Later after Rates Rise
(Semiannual Payments and Rounded Day Count)

a. Semiannual Forward Rates and Floating Payments

 (1) (2) (3) (4) (5) (6)

Beginning
Period

End of 
Period

Current
6-Month
LIBOR

Forward
Rate

End
of

Period

Floating
Payments at

End of Period

1/1/YR1   6/30/YR1 7.0275% 1 3.513751
7/1/YR1 12/31/YR1 7.0300% 2 3.515001
1/1/YR2   6/30/YR2 7.0875% 3 3.543754
7/1/YR2 12/31/YR2 7.1125% 4 3.556255
1/1/YR3   6/30/YR3 7.1925% 5 3.596265
7/1/YR3 12/31/YR3 7.2275% 6 3.613768

b. Period Forward Rates and Forward Discount Factors

(1) (2) (3) (4) (5) (6)

Beginning
Period

End of 
Period

End of 
Period

Forward
Rate

Period
Forward

Rate

Forward
Discount
Factor

1/1/YR2   6/30/YR2 1 7.0275% 3.5138% 0.966055
7/1/YR2 12/31/YR2 2 7.0300% 3.5150% 0.933251
1/1/YR3   6/30/YR3 3 7.0875% 3.5438% 0.901311
7/1/YR3 12/31/YR3 4 7.1125% 3.5563% 0.870359
1/1/YR4   6/30/YR4 5 7.1925% 3.5963% 0.840145
7/1/YR4 12/31/YR4 6 7.2275% 3.6138% 0.810843
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Using the Lattice Model to Value Forward Start Swaps and Swaptions 401

To use the lattice approach to value a swap after rates change, the
new rates are used to construct a new lattice. Panel b of Exhibit 15.12
shows the binomial interest rate lattice based on these rates. Based on this
binomial interest rate lattice, panel b shows the cash flows for the pay-
fixed swap. In panel c, the pay-fixed swap value at each node is com-
puted. The value of the swap two years later is shown at the root of the
lattice in panel c. For a pay-fixed swap it is $0.1524 per $100 of notional
principal. This is the same value as computed in Exhibit 15.11.

VALUING A FORWARD START SWAP

A forward start swap is a swap structure wherein the swap does not
begin until some future date that is specified in the swap agreement.
Thus, there is a beginning date for the swap at some time in the future

EXHIBIT 15.11     (Continued)
c. Valuing the Swap Two Years Later if Interest Rates Increase

(1) (2) (3) (4) (5) (6)  (7)

Beginning
Period

End
of

Period

Forward
Discount
Factor

Floating
Cash Flow

at End
of Period

PV of 
Floating
Payment

Fixed
Payment
at End

of Period

PV of 
Fixed

Payment

1/1/YR2   6/30/YR2 0.966055 3.513751   3.394477 3.525635   3.405958
7/1/YR2 12/31/YR2 0.933251 3.515001   3.280380 3.525635   3.290304
1/1/YR3   6/30/YR3 0.901311 3.543754   3.194025 3.525635   3.177694
7/1/YR3 12/31/YR3 0.870359 3.556255   3.095219 3.525635   3.068568
1/1/YR4   6/30/YR4 0.840145 3.596265   3.021385 3.525635   2.962045
7/1/YR4 12/31/YR4 0.810843 3.613768   2.930199 3.525635   2.858737

Total 18.91569 18.76331

d. Value of the Swap

Summary Fixed-Rate Payer Floating-Rate Receiver

PV of payments received $18.91569 $18.76331
PV of payments made   18.76331   18.91569
Value of swap   $0.15238 −$0.15238
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and a maturity date. We use the notation “(ys, ye) forward start swap”
to denote a forward start swap that starts ys years from now and ends
(matures) in ye years after the start date. Notice that we use years in the
notation, not periods. 

A forward start swap will also specify the swap fixed rate at which
the counterparties agree to exchange payments commencing at the start
date. We refer to this rate as the forward swap fixed rate for the forward
start swap. 

EXHIBIT 15.12  Valuing a Swap after Rates Rise Using the 
Binomial Interest Rates Rise (Semiannual Pay and Rounded Day Count)

Panel a. Interest Rate Lattice Two Years Later

10.19%
9.47%

8.74%   8.85%
8.13% 8.22%

7.53% 7.58%   7.68%
          7.03% 7.06% 7.13%

6.53% 6.58%   6.67%
6.13% 6.19%

5.72%   5.79%
5.38%

  5.03%

Time in Years 0.5 1 1.5 2 2.5

Panel b. Pay Fixed Swap Cash Flows Two Years Later

  1.5702
  1.2069

  0.8427   0.8981
  0.5382   0.5828

  0.2381   0.2666   0.3147
−0.0119   0.0023   0.0410

−0.2582 −0.2335 −0.1917
−0.4630 −0.4293

−0.6677 −0.6314
−0.8377

−1.0131

CF0.5 CF1 CF1.5 CF2 CF2.5 CF3
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Shortly, we will look at swaptions. In a swaption, one of the coun-
terparties (the buyer of the swaption) has the right, but not the obliga-
tion, to initiate a swap at some future date. In the case of a forward
start swap, both counterparties must perform; that is, both counterpar-
ties parties are committing to make the designated payments in the
future.

To illustrate the valuation of a forward start swap we will assume that
the swap starts in two years and the swap then has a tenor of three years.
Using our notation, this is a (2,3) forward start swap. We will assume that
the forward swap fixed rate is 7.1157%. In this illustration, we will use a
5-year swap based on a semiannual pay and a rounded day count.

Using the Cumulative Swap Valuation Lattice
To value a forward start swap, it is necessary to first determine the pos-
sible values of the swap at the start date. The cumulative swap valuation
lattice can be used to obtain the possible swap values at the start date of
the forward start swap. The values in the lattice are in terms of present
value.

Exhibit 15.13 shows the cumulative swap valuation lattice for the
5-year swap for which the swap fixed rate is 7.1157%. For example, if
the swap starts in year 2, then there are five possible values: 5.7720,
2.6611, −0.1438, −2.6608, and −4.9100. It might seem that the value of
a forward start swap is the average value of the swap values for that
period. In our illustration it would be $0.1437 for the pay fixed swap

EXHIBIT 15.12    (Continued)
Panel c. Pay Fixed Swap Values Two Years Later

1.4940
2.2763

2.4337 0.8601
2.0911 1.1185

1.3018 0.8421 0.3031
0.1524 0.1342 0.0964

−0.9626 −0.5686 −0.1855
−1.6059 −0.8040

−1.8156 −0.6136
−1.5957

−0.9882

Time in Years 0.5 1 1.5 2 2.5
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and −$0.1437 for the receive fixed swap if the swap starts in year 2.0.
The problem with using a simple average is that the possible swap val-
ues for a given period may not have the same probability of occurrence.
Instead of a simple averaging of the values at the period where the swap
begins, the value at each node in Exhibit 15.13 should be weighted by
the probability of realizing its value.

Obtaining the Weights at a Node
When there are only two movements for the rate in the next period from
a given node (i.e., in the binomial interest rate lattice), the number of
paths that arrive at a given node can be calculated using the following
relationship:

where n is the number of periods and j is the number of down states. 
Exhibit 15.14 shows the number of paths that arrive at each node

for a 5-year swap with semiannual payments. Let’s illustrate the above
formula using the exhibit to explain the notation and then to demon-
strate how to calculate the number of paths leading to each node in
Exhibit 15.14. Look at year 2. Start at the top of year 2. At that node,
there are no down states. Thus, j in the formula is 0. Since we are look-
ing at year 2, the number of periods is 4. Thus, n is equal to 4. Substi-
tuting these values into the formula we have:

This is a simple case since there is only 1 path that arrives at the top of
the lattice. For the second node from the top at year 2, there is one
down state so j is equal to 1. Since n is still 4 (as it is for all the nodes at
year 2), then

n!
j! n j–( )!
---------------------

4!
0! 4 0–( )!
------------------------- 4 3× 2× 1×

1 4 3× 2× 1×( )
----------------------------------------=

24
1 24( )
--------------- 1= =

4!
1! 4 1–( )!
------------------------- 4 3× 2× 1×

1 3 2× 1×( )
--------------------------------=

24
1 6( )
----------- 4= =
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406 VALUATION MODELS

We’ll do one more. Let’s compute the number of paths to arrive at the
node that is the third one down for year 2. In this case j is 2 and therefore,

Given the lattice that shows the number of paths to arrive at a node,
the probability of reaching a node can be computed. This is done by first
adding up the total number of possible paths for a period and then for a
given node dividing the number of paths that arrive at that node by the
total number of possible paths for that period. 

To illustrate this calculation, we will again use year 2. The total
number of paths is 16 (= 1 + 4 + 6 + 4 + 1). For the top node at year 2,
the probability is ¹⁄₁₆ or 6.25%. For the second node from the top of the

EXHIBIT 15.14  Lattice Showing the Number of Paths that Arrive at a Node

1
1

1 9
1 8

1 7 36
1 6 28

1 5 21 84
1 4 15 56

1 3 10 35 126
0 2 6 20 70

1 3 10 35 126
1 4 15 56

1 5 21 84
1 6 28

1 7 36
1 8

1 9
1

1

Time in Years 0.5 1 1.5 2 2.5 3 3.5 4 4.5

4!
2! 4 2–( )!
------------------------- 4 3× 2× 1×

2 1×( ) 2 1×( )
------------------------------------=

24
2 2( )
----------- 6= =

15-Buetow/Fabozzi-Lattice  Page 406  Thursday, August 29, 2002  9:59 AM

http://abcbourse.ir/


Using the Lattice Model to Value Forward Start Swaps and Swaptions 407

lattice at year 2, the probability is ⁴⁄₁₆ or 25.0%. Exhibit 15.15 shows in
tabular form the number of paths that arrive at a node and the associ-
ated probability. 

Computing the Forward Start Swap Value
Given the cumulative swap valuation lattice and the probability associ-
ated for each value of that lattice, the value of a forward start swap can
be computed. This is done at a starting period for the forward rate swap
as follows. Calculate at each node for the starting period the product of
the cumulative swap value at the node and the corresponding probabil-
ity. Then, sum up these products. The summation is the value of the for-
ward start swap.

The calculations are shown in Exhibit 15.15 for a (2,3) forward
start swap. For year 2, Column (1) shows the five swap values from the
cumulative swap valuation lattice (Exhibit 15.13). Column (3) shows
the probability corresponding to each of the five swap values. The last col-
umn shows the product of the swap value in Column (1) and the corre-
sponding probability in Column (3). The last row of the last column is
the sum of these products and is the value of our (2,3) forward start
swap. The value is zero for the forward start swap party that pays fixed
and therefore zero for the party that receives fixed.

Exhibit 15.16 shows the probability weighted cumulative swap val-
uation lattice. The two rows at the bottom of the lattice show for each
counterparty the value of a forward start swap for each period. Notice
that for year 2.0, the value agrees with what was computed in Exhibit
15.15.

EXHIBIT 15.15  Calculating the Probability Weighted Value for Year 2

(1) (2) (3) (4)

Cumulative
Swap Value

at Node

No. of Paths
that Arrive

at Node

Probability of
Realizing

Node Value

Probability
Weighted

Value at Node

  5.7720   1     6.25%   0.3608
  2.6611   4   25.00%   0.6653
−0.1438   6   37.50% −0.0539
−2.6608   4   25.00% −0.6652
−4.9100   1     6.25% −0.3069

Total 16 100.00%   0.0000
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Using the Lattice Model to Value Forward Start Swaps and Swaptions 409

Forward Start Swaps and Interest Rate Volatility 
The following table shows the effect of the assumed interest rate volatil-
ity on several pay fixed forward start swap values (recall that the
assumed interest rate volatility is 10% in our illustrations): 

Notice that the higher the interest rate volatility assumed, the higher the
value of the forward rate swap.

So why is there a difference as volatility increases? This is due to the
fact that the term structure model used in our illustration has an implied
drift rate that is an increasing function of interest rate volatility. As vol-
atility increases, so will the implied drift rate; the drift rate implies that
the rates are rising on average so as volatility increases and the drift rate
increases, so do the implied forward rates. As the implied forward rates
increase so will the swap fixed rate that produces a zero net present
value. This is seen as we move down any column in the table.

SWAPTION VALUATION

Options on interest rate swaps, called swaptions, grant the option buyer
the right to enter into an interest rate swap at a future date. The time
until expiration of the swap, the term of the swap, and the swap fixed
rate are specified. The swap fixed rate is the strike rate for the option.

There are two types of swaptions. A pay fixed swaption (also called
a payer’s swaption) entitles the option buyer to enter into an interest
rate swap in which the buyer of the option pays a fixed rate and receives
a floating rate. If the option buyer has the right to enter into the swap at
the expiration date of the option, the option is referred to as a European
style swaption. In contrast, if the option buyer has the right to enter
into the swap at any time until the expiration date, the option is referred
to as an American style swaption. In our discussion, when we refer to a
swaption, we will mean a European style swaption. For example, sup-
pose that a pay fixed swaption has a strike rate equal to 7%, a term of
three years, and expires in two years. This means that at the end of two

Volatility (1, 4) (2, 3) (3, 2)

  0.00% −0.0041 −0.0191 −0.0333
  5.00% −0.0032 −0.0143 −0.0250
10.00%   0           0           0         
15.00%   0.0049   0.0238   0.0418
20.00%   0.0118   0.0567   0.1003
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410 VALUATION MODELS

years the buyer of this pay fixed swaption has the right to enter into a 3-
year interest rate swap in which the buyer pays 7% (the swap fixed rate
which is equal to the strike rate) and receives the reference rate. 

In a receive fixed swaption (also called a receiver’s swaption), the
buyer of the swaption has the right to enter into an interest rate swap
that requires paying a floating rate and receiving a fixed rate. For exam-
ple, if the strike rate is 6.75%, the swap term is four years, and the
option expires in one year, the buyer of this receiver fixed swaption has
the right at the end of the next year to enter into a 4-year interest rate
swap in which the buyer receives a swap fixed rate of 6.75% (i.e., the
strike rate) and pays the reference rate.

We will let “(ye, yt) swaption” denote a swaption that expires in
year ye on a swap with a tenor of yt years. So, a (2,3) swaption is one
that expires in 2 years for a swap that has a tenor of 3 years.

The Role of the Cumulative Swap Valuation Lattice
In our illustration we will use the 5-year interest rate lattice based on
semiannual rates and rounded day count shown in Exhibit 15.8. Since
we will be valuing a pay fixed swaption with a strike rate of 7% in our
illustration later, Exhibit 15.17 shows the pay fixed swap cash flow lat-
tice for a plain vanilla swap with a notional principal of $100 based on
a swap fixed rate of 7%. As described earlier, the cumulative swap valu-
ation lattice can be constructed. 

Just to repeat how the values in Exhibit 15.17 are determined, let’s
look at year 1.5. We know that the cash flow at a node in the lattice is
found as follows:

(Fi,j-1 − Strike rate) × NPj × 0.5

where Fi,j-1 is the floating rate at node (i,j−1) that dictates the arrears cash
flow at j, strike rate is the strike rate of the pay fixed swaption, and NPj is
the notional principal at j. For our semiannual pay swap and rounded day
count, the formula for the cash flow for a $100 notional principal is:

(LIBOR at node − Strike rate) × $100 × 0.5

For a swap fixed rate of 7%, the formula is then:

(LIBOR at node − 0.07) × $100 × 0.5

Let’s use the three LIBOR values shown at year 1.5 to illustrate the
calculation. The three values are 8.0272%, 6.9686%, and 6.0496%. The
corresponding cash flow at each node is:
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412 VALUATION MODELS

For the cash flow lattice shown in Exhibit 15.17, the corresponding
cumulative swap valuation lattice is shown in Exhibit 15.18. From the
root of Exhibit 15.18 it can be seen that the value of the 5-year pay
fixed swap is 0.2132. This lattice will be the basis for all pay fixed swap-
tion valuations with a strike rate of 7%. We will see that all permuta-
tions of pay fixed swaptions are simply an exercise of the backward
induction methodology. 

Expiration Values and the Swaption Valuation Lattice
We will use the cumulative swap valuation lattice as shown in Exhibit
15.18 to produce corresponding pay fixed swaption valuation lattices.
We will value a (4,1) and a (2,3) pay fixed swaption. 

Exhibit 15.19 presents the results of the procedure for valuing the
(4,1) pay fixed swaption. Here is how we get the values in this lattice.
Look at year 4.0, the year when the option expires. The values for that
year shown in Exhibit 15.19 are called the expiration values. The expi-
ration value at the expiration date will be either:

 ■ zero if the value at the corresponding node in Exhibit 15.18 is negative,
or

 ■ the cumulative swap value at the corresponding node in Exhibit 15.18,
if the value is positive.

The reason the expiration value is zero if the swap value at the node in
Exhibit 15.18 is negative is that the owner of a swaption does not have
to exercise the option. That is, the swaption owner will allow the swap-
tion to expire unexercised. 

The expiration value at a node can be expressed as follows: 

max(cumulative swap value, 0)

Look at Exhibit 15.19. The five expiration values starting from the
top of year 4.0 are the same as in Exhibit 15.18 because the correspond-
ing swap value is positive. (They do differ in terms of the number of
decimal places.) For the lower four expiration values in year 4.0 in
Exhibit 15.19, the value is zero because the corresponding swap value in
Exhibit 15.18 is negative.

(0.080272 − 0.07) × $100 × 0.5 = $0.5136

(0.069686 − 0.07) × $100 × 0.5 = −$0.0157

(0.060496 − 0.07) × $100 × 0.5 = −$0.4752
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Using the Lattice Model to Value Forward Start Swaps and Swaptions 415

Applying the Backward Induction Methodology to Obtain a 
Swaption’s Value
Once the expiration values are computed at the swaption’s expiration
date, year 4.0 in our (4,1) swaption, it is simply an exercise of backward
induction thereafter, using the interest rate lattice to compute the discount
factors. For example, the top value at year 3.5 in Exhibit 15.19 is com-
puted as follows: 

0.5(5.048867 + 3.581393)/(1 + 0.115207/2) = 4.080103

For the lower value at year 1.5, the value in Exhibit 15.19 is found as
follows:

0.044771 = 0.5(0.085926 + 0.006129)/(1 + 0.056134/2)

Repeating this process throughout the lattice in Exhibit 15.19 results in
a (4,1) pay fixed swaption value of $0.48368 per $100 of notional principal. 

The swaption lattice shown in Exhibit 15.20 corresponds to the (2,3)
pay fixed swaption. The lattices are computed in the same manner as the
lattice for the (4,1) pay fixed swaption except that the expiration values
take place at different times within the swap value lattice.

We will repeat the approach above for a receive fixed swaption. We
will use a swap fixed rate (i.e., strike rate) of 6.75% instead of 7% which
was used for the pay fixed swaption. Exhibit 15.21 is the cash flow lattice
for a receive fixed swap with a swap fixed rate of 6.75%. In general the
cash flow lattice is found as follows:

(strike rate − Fi,j-1) × NPj × 0.5

EXHIBIT 15.20  (2,3) Pay Fixed Swaption with a Strike Rate of 7%

6.068853
4.330618

2.806647 2.963943
1.722592 1.507972

1.020846477 0.767053 0.16432
0.390203 0.079587

0.038625 0
0

0

Time in Years 0.5 1 1.5 2
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Using the Lattice Model to Value Forward Start Swaps and Swaptions 417

Therefore, given LIBOR at a node, the cash flow is determined as fol-
lows:

(strike rate − LIBOR at node) × $100 × 0.5

For a swap fixed rate of 6.75%, the formula is then:

(0.0675 − LIBOR at node) × $100 × 0.5

Again, we will use the three LIBOR values shown at year 1.5 to
illustrate the calculation. The three values are 8.0272%, 6.9686%, and
6.0496%. The corresponding value for the cash flow at each node at
year 1.5 is:

Exhibit 15.22 shows the corresponding receive fixed swap values
for a plain vanilla swap with a strike rate of 6.75%. Notice that the
value of the swap is negative. This is due to the fact that the swap is
worth zero when the swap fixed rate is 7.0513%; since we have
decreased the swap fixed rate, the receive fixed counterparty has lost
value relative to the higher swap fixed rate, therefore, the swap becomes
negative.

We follow the same process as in a pay fixed swaption to value a
(4,1) receive fixed swaption. Exhibit 15.23 shows the valuation lattice.
The value of the (4,1) receive fixed swap with a strike of 6.75% is
$0.26503 per $100 of notional principal. The other receive fixed swap-
tions are computed in the same manner.

The Effect on Interest Rate Volatility on a Swaption’s Value
It is important to understand that a critical factor in the value of a swap-
tion is the assumed interest rate volatility. Regardless of the type of swap-
tion, increasing volatility will increase a swaption’s value. In other words,
as with all options, volatility increases the value of a swaption. The
exhibits show that regardless of the level of the strike rate, volatility will
increase a swaption’s value. This can be seen in Exhibit 15.24 which
shows the effects of volatility on a (2,3) pay fixed swaption (PFS) and a
(2,3) receiver fixed swaption (RFS) with a strike rate of 6.75%. The
graphs clearly demonstrate that increasing volatility increases the value of
both types of swaptions. 

(0.0675 − 0.080272) × $100 × 0.5 = −$0.6386
(0.0675 − 0.069686) × $100 × 0.5 = −$0.1093
(0.0675 − 0.060496) × $100 × 0.5 =   $0.3502
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420 VALUATION MODELS

EXHIBIT 15.24  (2,3) Swaption Values with Varying Volatilities
(Strike Rate = 6.75%)

CONCLUSION

We have introduced an interest rate lattice-based approach to value swaps,
forward start swaps, and swaptions. The method is extraordinarily flexible
and easy to use. It is also easily extended to other types of interest rate lat-
tice structures like the trinomial or tetranomial. The lattice structure can
incorporate volatility structures as well. Moreover, it is also easily extended
to Monte Carlo-based interest rate models. We believe that the approach
offers advantages over other more popular methodologies.
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CHAPTER 16

421

Valuing Path-Dependent
Securities*

C. Douglas Howard, Ph.D.
Associate Professor of Mathemetics

Baruch College, CUNY

attice-based valuation techniques are today commonly used to value
a host of financial instruments. The procedure typically involves

modeling the random behavior of a relevant market observable (often
called the “factor”). If the application involved valuing a stock option,
for example, the factor would be the underlying stock price. To value a
collateralized mortgage obligation (CMO), some proxy for the general
level of interest rates would be more relevant. The underlying lattice
usually represents a discrete version of a continuous stochastic process
that the factor is presumed to follow over time. With some securities,
the stock option for example, the procedure is quite straightforward.
With other securities, however, the methodology becomes quite cumber-
some. The CMO is an extreme example of this latter category.

A major source of complexity arises from “path dependence.” This
occurs when knowing the value F(t*) of the factor at some time t*>0
(our convention is that time 0 corresponds to today) does not provide
sufficient information to calculate the cash flow generated by the secu-
rity at time t*. Rather, in the case of path dependence, the time t* cash
flow also depends in some manner on F(t) for all or some of 0 

 

≤ t

 

< t*,
that is, how the value of F got to F(t*) is important.

L

* Research for this chapter was supported by Andrew Kalotay Associates, Inc. The
author thanks Lee Bittengle for surveying the literature on this topic.
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422 VALUATION MODELS

Consider again a stock option, a European call to be precise. Path
dependence is not present in this example. Let F(t) denote the underlying
stock price at time t. Suppose the option is exercisable at time T at a strike
of K. At any time prior to T, a European option generates no cash flow
regardless of what happens to F, thus exhibiting path independence for
times t*

 

<T. At time T, the cash flow generated is given by max (0, F(T)

 

−
K)—how F got to F(T) is again irrelevant. Note that path dependence does
not mean simply that the security’s cash flow depends on the factor’s path.
Indeed, the stock option’s time T payoff depends on the path of the under-
lying stock—but only through the underlying’s value at time T.

A CMO, on the other hand, is heavily path-dependent. Among
many other things, we must certainly know the amount of the underly-
ing mortgage pool still outstanding at time t* to calculate the time t*
cash flow of the CMO. This, unfortunately, is a function of the prepay-
ment experience from time 0 to time t* which, in turn, is a function of
the path of interest rates over this entire period—not just the rate envi-
ronment at time t*.

In this chapter we examine closely two fixed-income securities exhib-
iting intermediate degrees of path dependence. The first, an indexed
amortizing note (IAN), is simply a bond that makes principal payments
prior to its stated maturity that are a prescribed function of the prevail-
ing level of interest rates: Principal payments are structured to accelerate
in low rate environments. As with the much more complicated CMO,
path dependence arises because the amount of the IAN outstanding at
any point in time (and hence the IAN’s cash flow at that time) depends
on prior interest rates. The second example, an interest rate derivative, is
a periodic cap on a short-term rate. Specifically we study a floating-rate
note (FRN) with the feature that its coupon rate, which adjusts yearly, is
permitted to increase only a limited amount from one year to the next. If
market rates decrease from one year to the next, the FRN’s coupon rate
decreases accordingly, unaffected by the periodic cap. Periodic caps are
commonly found embedded along with a host of other option-like fea-
tures in adjustable-rate mortgages. In this chapter, a one-factor model is
used because it is simpler to illustrate the concept of path-dependent
securities and their valuation. The principles also apply when a two-factor
model is used, where payments are tied to one factor (and its evolution)
and valuation is performed using the short-rate factor.

This chapter is organized as follows: In the next section we review the
basic methodology of lattice-based arbitrage-free pricing, first abstractly
and then with a concrete example. We outline the difference between recur-
sive and Monte Carlo (path sampling) methodologies. This section also
develops the notation we use in subsequent sections. Following this, we
value a simple IAN first via Monte Carlo and then, with the introduction of
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Valuing Path-Dependent Securities 423

a necessary non-stochastic “state” variable, via a recursive procedure. In
the last section we subject the periodic cap to the same analysis and discuss
some numerical procedures that make problems of this sort more tractable.
In this second example, a different state variable is called for.

In this chapter, a one-factor model (i.e., a model with one stochastic
variable) is used because it is simpler to illustrate the concept of path-
dependent securities and their valuation. In some applications, two or
more factors  may be needed to determine a security’s cash flow. The
principles illustrated here work equally well in this setting.  Note that,
for purposes of discounting, the short-term interest rate must always be
one of the factors present.

To the author’s knowledge, recursive techniques using coupled non-
stochastic state variables first appeared in practice in the late 1980s to
value sinking fund bonds1 whose complicated package of embedded
options exhibit substantial path-dependence. Hull and White2 describe
the use of this procedure in a different context. Prior to the advent of
the state variable technique, less efficient Monte Carlo procedures were
commonly used to value path-dependent securities.3

ARBITRAGE-FREE PRICING

The Single-Period Case
Consider the following single-period setup. At some future time 

 

∆t > 0,
m different “states of the world” are possible. We label these possible
outcomes 1, 2, ..., m. For the moment we leave the notion of what
exactly a state of the world is as an abstraction. However, let’s suppose
that this notion contains sufficient information to know the payoff of
any security C at time 

 

∆t once the outcome is specified. We denote these
state-dependent (future) payoffs by C(1), C(2), ..., C(m) and we presume
there is no cash flow prior, nor subsequent, to time 

 

∆t . Let aC + bC

 

′
denote the security that pays aC(j)+bC

 

′(j) in state j (i.e., aC+bC

 

′ is a

1 Salomon Brothers Inc. developed such a model.
2 See J. Hull and A. White, “Efficient Procedures for Valuing European and Ameri-
can Path-Dependent Options,” Journal of Derivatives (Fall 1993), pp. 21–31. For
other numerical examples and a good list of further references, see Chapter 18 in J.
Hull, Options, Futures, and Other Derivatives (Englewood Cliffs, NJ: Prentice Hall,
1997).
3 See, for example, W.C. Hunter and D.W. Stowe, “Path-Dependent Options: Valu-
ation and Applications,” Economic Review, Federal Reserve Bank of Atlanta, 77:2
(1992), pp. 29–34.
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424 VALUATION MODELS

portfolio comprising a units of security C and b units of security C

 

′). Any
reasonable method V(·) of ascribing value to securities based on these
future payoffs should satisfy:

(1)

if C(j) > 0 for 1 

 

≤ j

 

≤ m then V(C) > 0 (2)

Condition (1) says that a portfolio may be valued by summing the val-
ues of its constituent securities weighted by amounts held in the portfo-
lio, while condition (2) is the “arbitrage-free” condition that any
security generating positive payoff in every future outcome has positive
value today. One can show that any such V(·) must be of the form:

(3)

where p1, p2, ..., pm satisfy

(4)

Note, in particular, that the pj behave like probabilities (they are
referred to as arbitrage probabilities). For any security C, this calcula-
tion represents the expected payoff of C at time 

 

∆t discounted back to
today at the continuously compounding annual risk-free rate r.

The Multi-Period Case
Most securities generate a sequence of cash flow over time—not just one
future payoff. The single-period model generalizes to accommodate this
fact. Suppose our security C generates cash flow at a sequence of times 0 =
t < t1 < t2 < ... < tn = T. Between the ti and after T there is no possibility of
cash flow. At the i-th period there are m(i) possible states of the world
which, again, we label 1, 2, ..., m(i). When i=0, of course, there is only one
state so m(0)=1. We assume that the description of the states at period i
contains any information necessary to calculate the state-dependent
period i cash flow CFi(j) for each state 1 ≤ j ≤ m(i). In the multi-period
model, an “outcome” corresponds to a sequence of states

representing how the world unfolds over time. We let Ω represent the
space of all such outcomes. 

V aC bC′+( ) aV C( ) bV C′( )+=

V C( ) e r t∆– p1C 1( ) p2C 2( ) … pmC m( )+ + +( )=

each pj 0 and pj 1=
j 1=

m

∑≥

ω j1 … jn, ,( ) where 1 ji m i( )≤ ≤=
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We shall refer to a pair (i,j), where i is a time period (0 ≤ i < n) and j
is a state (1 ≤ j ≤ m(i)), as a “node.” Assume that at each node there
resides a single-period arbitrage-free pricing (AFP) model specified by the
node-dependent risk-free rate rij and arbitrage probabilities pi(j → j′) for
each j′ with 1 ≤ j′ ≤ m(i + 1). This latter expression represents the proba-
bility of a transition from state j in period i to state j′ in period i+1.

Suppose that at time ti we are in state j. The aggregate payoff of C
one period forward (at time ti+1) comes from two sources: (1) the cash
flow CFi+1(j′) generated by C at time ti+1 (which depends on the period
i+1 state j′); and (2) the value, which we denote Vi+1(j′), assigned at
node (i+1,j′) to the subsequent cash flow that C may generate at times
ti+2, ..., tn. Using equation (3), we deduce that we must have 

(5)

if our model is to satisfy conditions (1) and (2) at each node. Since we
know the state dependent cash flow CFi+1(j′), this procedure makes
sense if we know the Vi+1(j′)’s. But we know that Vn(j′) = 0 for 1 ≤ j′ ≤
m(n): this is merely the statement that there is no cash flow subsequent
to time tn. This allows us to apply equation (5) when i=n−1 to calculate
the Vn−1(j)’s. But then we can apply equation (5) to i=n−2 and so forth,
backwards (recursively) through the lattice, until we have calculated
V0(1). But V0(1) represents the value today of all future cash flow—pre-
cisely what we are interested in.

A Simple Example
We make this concrete with a simple example. In the subsequent sec-
tions, we will expand upon this same example for purposes of valuing
the IAN and periodic cap. Suppose each ti = i (so cash flow can occur
only annually) and consider the lattice shown in Exhibit 16.1. The arbi-
trage probabilities are prescribed as follows:

and only those transitions with positive probability are shown in
Exhibit 16.1. The numbers at each node correspond to the rij stated as
rates compounded annually so as to correspond, for convenience, to the
time increments. With the rij quoted in this manner and noting that ti+1
− ti = 1, equation (5) must be rewritten as

Vi j( ) e
rij– ti 1+ ti–( )

pi j j′→( ) CFi 1+ j′( ) Vi 1+ j′( )+[ ]
j ′ 1=

m i 1+( )

∑=

pi j j′→( ) 0.5 if j′ j=   or j′ j 1+=
0    otherwise




=

16-Howard-Valuing  Page 425  Thursday, August 29, 2002  9:59 AM

http://abcbourse.ir/
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EXHIBIT 16.1  State-Dependent 1-Year Risk-Free Rate

(6)

and setting into this the values for our arbitrage probabilities yields

(7)

We use this setup to value a (risk-free) bond that pays $6 in years 1,
2, and 3, and $106 in year 4, irrespective of the states in those periods.
Exhibit 16.2 shows the values of Ci(j) and Vi(j) that equation (7) produces
in this setting. For example, letting 〈6.902〉 denote the state (in period 1)
in which the 1-year rate is 6.902%, the calculation of V1 (〈6.902〉) is

10.588
�

9.169
� �

7.950   7.844
� � �

6.902 6.792
� � � �

6.000 5.889   5.811
� � � �

5.113 5.032
� � �

4.363   4.305
� �

3.728
�   3.189

Period 0 1 2 3 4

Vi j( )
1

1 rij+
--------------- pi j j′→( ) CFi 1+ j′( ) Vi 1+ j′( )+[ ]

j ′ 1=

m i 1+( )

∑=

Vi j( )
1

1 rij+
--------------- 0.5 CFi 1+ j( ) Vi 1+ j( )+[ ] 0.5 CFi 1+ j 1+( ) Vi 1+ j 1+( )+[ ]+{ }=

V1 6.902〈 〉( ) 1
1.06902
--------------------- 0.5 6.0 100.190+( ) 0.5 6.0 96.505+( )+[ ] 97.610= =
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We note that this bond is valued today at 100.0. In fact, the four bonds
paying a 6% annual coupon maturing in 1, 2, 3, and 4 years are all val-
ued at 100.0. This lattice was constructed to explain a flat 6% term
structure. One can also confirm that the local volatility of the 1-year
rate is 15% throughout the lattice (e.g., ¹⁄₂ log(6.902/5.113) = 0.15).

There is another algorithm that arrives at the 100.0 value of the 4
year 6% bond. Specifically: (1) Calculate the period-by-period cash flow
corresponding to each of the (sixteen) 4-year paths through the lattice;
(2) discount each of those flows back to today using the earlier path-
dependent rij to arrive at a “path-dependent present value” PV(ω); (3)
calculate the expected PV over the sixteen paths ω. We represent a path
ω by a sequence of +’s and −’s, depending on whether at each juncture
we move up or down, respectively. Then, for this 4-year 6% bond, we
have, for example:

EXHIBIT 16.2  State-Dependent Ci(⋅) and Vi(⋅) for the 3-Year Note

106.000
0.000

6.000
97.097

6.000 106.000
96.505 0.000

6.000 6.000
97.610 99.258

6.000 106.000
100.000 100.190 0.000

6.000 6.000
102.390 100.922

6.000 106.000
103.060 0.000

6.000
102.190

106.000
0.000

Period 0 1 2 3 4

PV(+ + + +) 106.0 1.09169 1.0795 1.06902 1.0⁄⁄⁄⁄=
6.0 1.0795 1.06902 1.06⁄⁄⁄ 6.0 1.06902 1.06⁄⁄+ +
6.0 1.06⁄+

95.237=
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Note also that PV(+ + + −) = 95.237 also. This is because neither the
year 4 cash flow nor the discounting process depend on the year 4 inter-
est rate. This holds in this case for all paths ω: PV(ω) is independent of
the last + or − step. Notationally, we write this as PV(+ + + ±) = 95.237.
Calculating an expected value over the eight equally likely pairs of paths
(+ + + ±), (+ + − ±), (+ − + ±), (+ − − ±), (− + + ±), (− + − ±), (− − + ±), and
(− − − ±) (respectively) gives: 

(8)

This procedure works for general securities in the setting of equation
(6). In fact, letting

denote the probability of observing the path ω = (j1, ...,jn), (where j0=1—
today’s state) we have in general that

(9)

where

is the path-dependent discount factor that discounts a period i cash flow
to today. (Equation (9) can be proved by induction on the length of the
lattice and partitioning Ω on the value of j1.)

We refer to equation (9) as the Monte Carlo approach. This is some-
what of a misnomer since equation (9) samples every path ω through the
lattice and calculates the average of PV(ω) weighted by the probability
of observing each path ω. In practice, the scale of the problem will be
much larger and there will be too many paths through the lattice to per-
form an exhaustive sampling. Usually, therefore, Monte Carlo simula-
tion involves estimating V0(1) by randomly sampling paths through the
lattice in a manner such that the probability of selecting any particular
path ω is precisely p(ω). In general (and depending on the variance of

V0 1( ) 95.237( 97.004 98.678 100.064+ + +=

100.261 101.671 102.997 104.088+ + + + ) 8⁄
100.000=

p ω( ) pi ji ji 1+→( )
i 0=

n 1–

∏=

V0 1( ) PV ω( )p ω( )
ω Ω∈
∑ CFi ji( )di ω( )

i 1=

n

∑ p ω( )
ω Ω∈
∑= =

di ω( )
1

1 rkjk
+

------------------
k 0=

i 1–

∏=
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PV(ω) across paths), accurate estimates require a large number of sam-
ple paths making the method computationally inefficient.

INDEXED AMORTIZING NOTES

Presently we apply these two approaches to the IAN—our first example
of a path-dependent security. The stochastic factor is the one-year risk-
free rate, which follows the stochastic process in the previous example
(Exhibit 16.1). Recall that this means 6% is a market yield for risk-free
bonds maturing in 1, 2, 3, and 4 years. The security is a 4-year IAN pay-
ing interest annually at a fixed rate of 6% per year. Regardless of what
happens to interest rates, there is no principal payment the first year (the
“lock-out” period). In years 2 and 3, the amount of principal paid
depends on the level of the 1-year rate via the “amortization schedule”: if
the 1-year rate is below 5%, 75% of the remaining balance is repaid; if
the rate is between 5% and 6%, 50% of the balance is repaid; if the rate
exceeds 6%, there is no principal payment. If a principal payment made
in accordance with this formula brings the outstanding balance below
20% of the amount originally issued (which we take to be 100.0), the
entire bond is retired immediately (the “clean-up” provision). At matu-
rity, in year 4, any remaining principal is amortized. Instruments with
these qualitative features are quite common, both as stand-alone notes
and, more frequently, as the fixed-pay side of interest rate swaps. We
observe that the amortization schedule accelerates principal payment in
low rate environments and thus behaves like a partial par call. We expect,
therefore, that this note will be valued below 100.0 since a note with the
same coupon but no principal acceleration is valued at 100.0. 

Valuation Via Monte Carlo
First we value the IAN via Monte Carlo, where it is again feasible to sample
every path and calculate exactly the expected value of PV(ω). Again, we
describe paths by a sequence of + or − signs, so, for example ω = (− − − −)
corresponds to the following progression of the 1-year yield:

producing the following sequence of principal payments:

year 1 year 2 year 3 year 4
6.000% → 5.113% → 4.363% → 3.728% → 3.189%

year 1 year 2 year 3 year 4
0.0 75.0 25.0 0.0
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EXHIBIT 16.3  Path-by-Path Analysis of the IAN

This particular path illustrates the lock-out period (year 1: There is
no amortization even though 5.113 < 6.0), the amortization schedule
(year 2: The payment is 75.0 because 4.363 < 5.0), and the clean-up
provision (year 3: The payment would be 0.75 × 25.0 but this would
leave only 6.25 outstanding, which is less than the clean-up provision).
When interest payments on the outstanding principal are added, the fol-
lowing sequence of cash flow results:

The resulting PV is calculated as

Repeating this exercise for each of the 16 paths through the lattice
yields the table of cash flow and PV shown in Exhibit 16.3. Since each
path through this lattice has equal probability, we may calculate the
expected value of PV(ω) by simply averaging the final column in this

ω Year 1 Year 2 Year 3 Year 4 PV(ω)

(+ + + +) 6.000 6.000 6.000 106.000   95.237
(+ + + −) 6.000 6.000 6.000 106.000   95.237
(+ + − +) 6.000 6.000 6.000 106.000   97.004
(+ + − −) 6.000 6.000 6.000 106.000   97.004
(+ − + +) 6.000 56.000 3.000   53.000   98.941
(+ − + −) 6.000 56.000 3.000   53.000   98.941
(+ − − +) 6.000 56.000 28.000   26.500   99.442
(+ − − −) 6.000 56.000 28.000   26.500   99.442
(− + + +) 6.000 56.000   3.000   53.000 100.528
(− + + −) 6.000 56.000   3.000   53.000 100.528
(− + − +) 6.000 56.000 28.000   26.500 101.038
(− + − −) 6.000 56.000 28.000   26.500 101.038
(− − + +) 6.000 81.000 26.500     0.000 101.148
(− − + −) 6.000 81.000 26.500     0.000 101.148
(− − − +) 6.000 81.000 26.500     0.000 101.148
(− − − −) 6.000 81.000 26.500     0.000 101.148

year 1 year 2 year 3 year 4
6.0 81.0 26.5 0.0

PV(– – – –) 26.5 1.04363 1.05113 1.06⁄⁄⁄=
81.0 1.05113 1.06⁄⁄ 6.0 1.06⁄+ +

101.148=
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table. This yields 99.311. Any recursive procedure, of course, must
agree with this calculation of value. 

The path dependence of the IAN can be observed in this table. For
example, consider the paths (+ + − −), (+ − + −), (− + − +), and (− − + +).
In each case, the state in year 4 corresponds to a 1-year rate of 5.811%,
that is, each of these paths ends up in state 〈5.811〉. However, the year 4
cash flow corresponding to these paths is 106.0, 53.0, 26.5, and 0.0,
respectively. Hence the cash flow in year 4 cannot be deduced from the
state in year 4—it is influenced also by how one gets to that state.

Recursive Valuation
To value the IAN recursively, we partition the interest rate states (like
〈5.811〉) by further specifying how much of the IAN is outstanding before
the principal payment of that year. The state 〈5.811〉, for example, is par-
titioned into 〈5.811, 100〉, 〈5.811, 50〉, 〈5.811, 25〉, and 〈5.811, 0〉. This
additional variable, whose values partition the state as specified by the
value of the stochastic variable, is referred to as a non-stochastic state
variable and its range of attainable values is referred to as the state space.
(It is easy in this example to verify that the state space is {0, 25, 50, 100},
i.e., at all times one of these amounts must be outstanding. More about
this later.) Notice that some states, 〈3.189, 100〉 for example, are impossi-
ble to reach. This phenomenon will not make our calculations incorrect,
it just means that we will do some unnecessary calculations.

Once the time t 1-year rate and amount outstanding (prior to cur-
rent-period amortization) are both specified as, say, 〈r, P〉, the time t cash
flow can easily be calculated: The interest component is just 0.06P; the
principal component is deduced from the value of P, the lock-out period,
the amortization table, and the clean-up provision by the formula

and the state-dependent cash flow is the sum of interest and principal. We
begin our recursive calculations at the end of the lattice, just as we do when
there is no path dependence. Exhibit 16.4 shows for periods 1 through 4
the cash flow CFi(〈r, P〉) calculated as just described (and shown as princi-
pal and interest combined) as well as the value of subsequent cash flow
Vi(〈r, P〉) (shown just below the cash flow) for each combination of r and P.

time t principal payment

0 if t 1=
0.75P if t 2 or 3, r 5%<  and 0.25P 20>,=
0.5P if t 2 or 3  5% r 6%<≤  and 0.5P 20>,,=
0 if t 2 or 3, and r 6%≥=
P otherwise








=
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EXHIBIT 16.4  CFi(⋅) and Vi(⋅) for the IAN

We reiterate that V4(〈r, P〉)=0 for all r and P since there is no cash
flow after year 4. Since the IAN matures in period 4, the cash flow is
simply the sum of the amount outstanding and interest on that
amount—a calculation that is independent of the 1-year rate at period
4. For example, the period 4 cash flow corresponding to state 〈4.305,25〉
is 25.0 + 1.5 = 26.5.

Amount Outstanding

0 25 50 100

Period 1 6.902% 0.000   1.500      3.000      6.000
0.000 24.381  48.732    97.515

5.113 0.000   1.500   3.000     6.000

0.000 25.211 50.393 101.024

Period 2 7.950 0.000   1.500 3.000     6.000
0.000 24.127 48.253   96.506

5.889 0.000 26.500 28.000   56.000
0.000   0.000 24.939   49.986

4.363 0.000 26.500 53.000   81.000
0.000   0.000   0.000   25.392

Period 3 9.169 0.000   1.500   3.000     6.000
0.000 24.274 48.549   97.097

6.792 0.000   1.500   3.000     6.000
0.000 24.815 49.629   99.258

5.032 0.000 26.500 28.000   56.000
0.000   0.000 25.230   50.461

3.728 0.000 26.500 53.000   81.000
0.000   0.000   0.000   25.548

Period 4 10.588 0.000 26.500 53.000 106.000
0.000   0.000   0.000     0.000

7.844 0.000 26.500 53.000 106.000
0.000   0.000   0.000     0.000

5.811 0.000 26.500 53.000 106.000
0.000   0.000   0.000     0.000

4.305 0.000 26.500 53.000 106.000
0.000   0.000   0.000     0.000

3.189 0.000 26.500 53.000 106.000
0.000   0.000   0.000     0.000
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The situation is more complicated in period 3. Here the amortiza-
tion schedule and the amount outstanding interact to determine the cash
flow. Consider, for example, the calculations corresponding to state
〈5.032,50〉. The interest payment of 3 is calculated as 0.06 × 50.0. Also,
since 5.0 ≤ 5.032 < 6.0, 50% of the outstanding amount is prepaid in
period 3. This principal payment of 25.0 leaves 25.0 still outstanding—
an amount which exceeds the clean-up provision. The state 〈5.032,50〉
cash flow is therefore 25.0+3.0=28.0. Next we calculate V3(〈5.032,50〉).
From a rate of 5.032% in year 3, the stochastic interest rate process
moves to either 4.305% or 5.811% in year 4—each possibility with
probability ¹⁄₂ (see Exhibit 16.1). Since 50.0 of principal was outstand-
ing (before the period 3 payment) and 25.0 is paid off in period 3, the
amount outstanding changes to 25.0. Thus, from state 〈5.032,50〉 in
period 3, one moves to either 〈4.305,25〉 or 〈5.811,25〉 in year 4 with
each possibility having probability ¹⁄₂. We therefore have, using equa-
tion (6) and the period 4 results in Exhibit 16.4, 

Compare this with the analogous calculations for state 〈5.032,25〉 in
period 3. The interest cash flow is 0.06 × 25.0 = 1.5. The principal pay-
ment specified by the amortization schedule is again 50% of the amount
outstanding which results in a payment of 12.5 = 0.5 × 25.0. This would
leave only 12.5 remaining outstanding, however, so the clean-up provi-
sion requires that the entire amount of 25.0 be retired leaving nothing
outstanding. Thus, from state 〈5.032,25〉 in period 3, one moves to
either 〈4.305,0〉 or 〈5.811,0〉 in period 4, with probability ¹⁄₂. Hence

The calculations in period 2 are analogous. For example, in state
〈5.889,100〉, the principal payment is 50.0 generating a cash flow of
6.0+50.0=56.0 and leaving 50.0 remaining outstanding. Hence one
moves from state 〈5.889,100〉 in period 2 to either 〈5.032,50〉 or
〈6.792,50〉 in period 3, each with equal likelihood. Thus

V3 5.032 50,〈 〉( )
1

1.05032
--------------------- 0.5 26.5 0.0+( ) 0.5 26.5 0.0+( )+[ ] 25.230= =

V3 5.032 25,〈 〉( )
1

1.05032
--------------------- 0.5 0.0 0.0+( ) 0.5 0.0 0.0+( )+[ ] 0.0= =

V2 5.889 100,〈 〉( )
1

1.05889
--------------------- 0.5 28.0 25.230+( ) 0.5 3.0 49.629+( )+[ ]=

49.986=
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Similarly, in period 1, one moves from state 〈5.113,100〉 to either
〈4.363,100〉 or 〈5.889,100〉 in period 2, each with equal likelihood.
Thus, CF1(〈5.113,100〉) = 0.06 × 100.0 (plus 0 principal) and

Finally, at time 0 (not shown in Exhibit 16.4), there is only today’s
state 〈6.000, 100〉 to calculate. From this state we move to either
〈5.113,100〉 or 〈6.902,100〉, each with probability ¹⁄₂. We therefore have

This agrees, as required, with the result obtained via the Monte Carlo
analysis.

Selecting the Necessary State Space
As we previously observed, only the amounts in the list {0,25,50,100}
can be outstanding at any point in time. This is because the IAN starts
with 100.0 outstanding and this list is closed under the rules of principal
amortization (the amortization schedule and the clean-up provision).
(For example, if we amortize 50% of 50.0 we get 25.0 outstanding,
another number in the list.) In general, it may not be so easy to construct
an exhaustive list of possible states or, commonly, the list of possible
states may be very large. A very effective numerical procedure is to parti-
tion the range of the state space (in this case, the range is from 0 to 100
outstanding) into a manageable number of “buckets,” for example: 0,
20–30, 30–40, ..., 90–100. Sometimes a surprisingly small number of
buckets can lead to a very good approximation of the precise answer. We
illustrate this technique with the periodic cap in the next section.

Notice also that not all the states in each period can be reached. For
example, in periods 1 and 2 only those states with 100.0 outstanding
are reached. This is because the lock-out provision prevents any amorti-
zation until year 2. Thus, even in year 2, the amount outstanding prior
to that year’s amortization must be 100.0. In Exhibit 16.4 we have high-
lighted the region of each period’s state space that is actually reachable.

From the standpoint of computational efficiency, it may be better to
first pass forward through the lattice to determine which states are actu-

V1 5.113 100,〈 〉( )
1

1.05113
--------------------- 0.5 81.0 25.392+( ) 0.5 56.0 49.986+( )+[ ]=

101.024=

V0 1( ) V0 6.000 100,〈 〉( )
1

1.06
----------- 0.5 6.0 101.024+( ) 0.5 6.0 97.515+( )+[ ]= =

99.311=
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ally reachable. Then, during the recursive process described above, it is
only necessary to calculate the CFi and Vi values for those states that are
flagged as reachable in the first pass. In our IAN example, this would
result in substantial savings. On the other hand, in some situations, this
forward pass may take more time than it saves. It may be better to com-
promise and avoid only some of the unused state space by (non-time-
consuming) ad hoc reasoning. In the case of the IAN, for example, the
unnecessary states in periods 1 and 2 could be avoided simply by recog-
nizing the effects of the lock-out provision. The best computational
strategy will certainly depend on the application.

PERIODIC CAPS

In this final section we subject a floating-rate note with an embedded peri-
odic cap to similar analyses. We illustrate with this application both the
bucketing and forward pass numerical procedures described above. Specifi-
cally, consider a 4-year FRN that, for ease of exposition, pays interest
annually. Its initial rate of interest is 6%—today’s 1-year risk-free rate.
Each year, the note’s rate of interest resets to the new 1-year risk-free rate
subject to the constraint that the rate is not permitted to increase (a very
strong periodic cap!). In year 4, the note makes a final interest rate payment
(of at most 6% due to the periodic cap) and returns the original principal
(which we again take to be 100.0). We study this instrument in the same
yield environment as before: a flat 6% term structure with a 15% volatility.
Exhibit 16.1 again represents the underlying interest rate process.

Valuation via Monte Carlo
Consider again the interest rate path ω = (− − − −) through the lattice in
Exhibit 16.1:

Since the 1-year yield decreases steadily along this path, the periodic cap
has no impact. The capped FRN behaves just as an uncapped FRN pro-
ducing the following sequence of cash flow:

resulting in the PV calculation:

year 1 year 2 year 3 year 4
6.000% → 5.113% → 4.363% → 3.728% → 3.189%

year 1 year 2 year 3 year 4
6.000 5.113 4.363 103.728
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It is not surprising that for this choice of ω we have a path-dependent
present value of exactly 100.000, since the security is always paying a
rate of interest equal to the discount rate. 

In the scenario corresponding to ω  = (+ + + +), which unfolds as follows:

the situation is very different. In each year, the periodic cap is binding,
preventing the interest rate from increasing. The resulting sequence of
cash flow is therefore:

which produces the result PV(ω ) = 95.237. 
Exhibit 16.5 shows the same analysis for all 16 paths through the

lattice. Since the paths are all equally likely, the arithmetic average of
the path-dependent present values yields the value of the capped FRN.
This number is 98.343. Noting that the value of the uncapped FRN is
100.000 (this follows since, in every path, the uncapped FRN is always
paying an interest rate equal to the discount rate), we deduce that the
value of the periodic cap (to the issuer) is 100.000 − 98.343 = 1.657. As
with the IAN, this is an exact calculation representing an exhaustive
sampling of the 16 paths through the lattice. In practice, of course, an
exhaustive sampling would be impossible and valuing a periodic cap
with this approach would require true Monte Carlo path sampling.

Exhibit 16.5 reveals the path-dependent nature of the capped FRN.
In particular, the six paths that end in year 4 at the interest rate state
〈5.881〉 (i.e., paths with two +’s and two −’s) produce five different cash
flow amounts corresponding to that state. Notice also that the periodic
cap behaves very differently from a straight cap at 6% (see, for exam-
ple, the path ω = (− + − +)).

Recursive Valuation
Finally, we use a recursive procedure to value the capped FRN and
hence the periodic cap itself. In this example, the non-stochastic state

year 1 year 2 year 3 year 4
6.000% → 6.902% → 7.950% → 9.169% → 10.588%

year 1 year 2 year 3 year 4
6.000 → 6.000 → 6.000 → 106.000

PV – – – –( ) 103.728 1.03728 1.04363 1.05113 1.06⁄⁄⁄⁄=
4.363 1.04363 1.05113 1.06⁄⁄⁄+
5.113 1.05113 1.06⁄⁄ 6.0 1.06⁄+ +

100.000=
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variable that we couple with the stochastic process governing the 1-year
risk-free rate is simply the current interest rate that the capped FRN is
paying, a number which we call C. At any period a state is denoted by
〈r, C〉, where C takes on values in

C = {3.728, 4.363, 5.032, 5.113, 5.889, 6.000}

and r is the state-dependent 1-year risk-free rate. We remark that only in
year 4 are all six possibilities for C attainable. In our simple example, C
is quickly obtained from a glance at Exhibit 16.5. As previously men-
tioned, in general it may be impractical to explicitly calculate the state
space or its size may render the calculations intractable. A numerical
shortcut is necessary.

Bucketing and the Forward Pass
We illustrate the bucketing procedure described above by crudely
assuming that C takes on one of the four values in 

EXHIBIT 16.5  Path-by-Path Analysis of the Capped FRN

ω Year 1 Year 2 Year 3 Year 4 PV(ω)

(+ + + +) 6.000     6.000 6.000  106.000   95.237
(+ + + −) 6.000     6.000 6.000  106.000   95.237
(+ + − +) 6.000 6.000 6.000 106.000   97.004
(+ + − −) 6.000 6.000 6.000 106.000   97.004
(+ − + +) 6.000 6.000 5.889 105.889   98.499
(+ − + −) 6.000 6.000 5.889 105.889   98.499
(+ − − +) 6.000 6.000 5.889 105.032   99.204
(+ − − −) 6.000 6.000 5.889 105.032   99.204
(− + + +) 6.000 5.113 5.113 105.113   98.010
(− + + −) 6.000 5.113 5.113 105.113   98.010
(− + − +) 6.000 5.113 5.113 105.032   99.342
(− + − −) 6.000 5.113 5.113 105.032   99.342
(− − + +) 6.000 5.113 4.363 104.363   99.452
(− − + −) 6.000 5.113 4.363 104.363   99.452
(− − − +) 6.000 5.113 4.363 103.728 100.000
(− − − −) 6.000 5.113 4.363 103.728 100.000

Cˆ 3.000 4.000 5.000 6.000, , ,{ }=
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a numerical simplification that will result in obtaining only an approxi-
mate solution. (We think of these numbers as buckets into which inter-
mediate values are placed.) In period 4, for example, r assumes one of
five possible values each of which is partitioned by the four states of C,
yielding 20 states of the world. 

Exhibit 16.6 shows the forward pass analysis that is used to flag the
subset of states in each period that are actually reachable. The period 0
analysis is straightforward. Referring to today’s state simply as 〈6.000〉
(today’s value of r), the value of r moves from 6.000 to either 5.113 or
6.902 (refer again to Exhibit 16.1) and in either case the period 1 value
of C will be 6.000 (the capped FRN’s initial interest rate). Hence only
the states 〈5.113, 6.000〉 and 〈6.902,6.000〉 are reachable in period 1.
The period 1 analysis illustrates a ramification of the bucketing approx-
imation. From state 〈5.113, 6.000〉 the value of r moves to either 4.363
or 5.889. The value of C, however, should change to 5.113 (because the
FRN is permitted to reset downward) which is a number not present in

. Numerically, we will interpolate between what happens when
C=5.000 and C=6.000 in period 2. Therefore, to calculate values in
state 〈5.113, 6.000〉 in period 1 we must have already calculated values
in states 〈4.363,5.000〉, 〈4.363,6.000〉, 〈5.889,5.000〉, and 〈5.889,6.000〉
in period 2. We therefore flag these four states as reachable. From state
〈6.902,6.000〉 in period 1, in contrast, the value of C is not permitted to
reset upward to 6.902 and only states 〈5.889,6.000〉 and 〈7.950,6.000〉
are reachable in period 2. We collect the (five) states in period 2 that it is
possible to reach from the reachable states in period 1 and repeat the
analysis at each of these states. Moving forward period-by-period con-
firms that we need only calculate values for the portion of the state
space in Exhibit 16.7 where numbers are displayed.

The Recursive Valuation Pass
Finally, we move backward through the lattice calculating the relevant val-
ues of CFi(·) and Vi(·) (see Exhibit 16.7—calculations start at the bottom).

In period 4 (at maturity), V4(·)=0 as usual. The cash flow at maturity
is just 100.000 (the return of principal) plus C (the current interest rate
that the FRN is paying). This produces the period 4 results. For example:
CF4(〈7.844, 5.000〉) = 100.0 + 5.0 = 105.0. In periods 1 through 3,
CFi(〈r, C〉)=C since the FRN repays principal only at maturity. 

We verify three calculations of Vi(·). First, from state 〈5.032, 5.000〉
in period 3, the value of r moves to either 4.305 or 5.811 with equal like-
lihood. The value of C does not change in this case since 5.032 > 5.000.
So from state 〈5.032, 5.000〉 in period 3, we branch to either 〈4.305,
5.000〉 or 〈5.811, 5.000〉 in period 4 with equal likelihood and we have

Ĉ
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EXHIBIT 16.6  State Transitions for the Capped FRN

EXHIBIT 16.7  CFi(⋅) and Vi(⋅) for the Capped FRN

Period From To

Today 〈6.000〉 〈5.113,  6.000〉, 〈6.902,  6.000〉
1 〈5.113,  6.000〉 〈4.363,  5.000〉, 〈4.363,  6.000〉, 〈5.889,  5.000〉,

〈5.889,  6.000〉
〈6.902,  6.000〉 〈5.889,  6.000〉, 〈7.950,  6.000〉

2 〈4.363,  5.000〉 〈3.728,  4.000〉, 〈3.728,  5.000〉, 〈5.032,  4.000〉,
〈5.032,  5.000〉

〈4.363,  6.000〉 〈3.728,  4.000〉, 〈3.728,  5.000〉, 〈5.032,  4.000〉,
〈5.032,  5.000〉

〈5.889,  5.000〉 〈5.032,  5.000〉, 〈6.792,  5.000〉
〈5.889,  6.000〉 〈5.032,  5.000〉, 〈5.032,  6.000〉, 〈6.792,  5.000〉,

〈6.792,  6.000〉
〈7.950,  6.000〉 〈6.792,  6.000〉, 〈9.169,  6.000〉

3 〈3.728,  4.000〉 〈3.189,  3.000〉, 〈3.189,  4.000〉, 〈4.305,  3.000〉,
〈4.305,  4.000〉

〈3.728,  5.000〉 〈3.189,  3.000〉, 〈3.189,  4.000〉, 〈4.305,  3.000〉,
〈4.305,  4.000〉

〈5.032,  4.000〉 〈4.305,  4.000〉, 〈5.811,  4.000〉
〈5.032,  5.000〉 〈4.305,  5.000〉, 〈5.811,  5.000〉
〈5.032,  6.000〉 〈4.305,  5.000〉, 〈4.305,  6.000〉, 〈5.811,  5.000〉,

〈5.811,  6.000〉
〈6.792,  5.000〉 〈5.811,  5.000〉, 〈 7.844,  5.000〉
〈6.792,  6.000〉 〈5.811,  6.000〉, 〈7.844,  6.000〉
〈9.169,  6.000〉 〈7.844,  6.000〉, 〈10.588,  6.000〉

Current Coupon Rate

3.000 4.000 5.000 6.000

Period 1 6.902%     6.000
  97.334

5.113     6.000
  99.139

Period 2 7.950     6.000
  96.505

5.889     5.000     6.000
  98.354   99.599

4.363     5.000     6.000
  99.695   99.695
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EXHIBIT 16.7    (Continued)

Next, from state 〈4.363, 5.000〉 in period 2, the value of r moves to
either 3.728 or 5.032, each with probability ¹⁄₂. The value of C should
change to 4.363 since 4.363 < 5.000, but this number is not in . If it
were, we would calculate

Current Coupon Rate

3.000 4.000 5.000 6.000

Period 3 9.169     6.000
  97.097

6.792     5.000     6.000
  98.322   99.258

5.032       4.000     5.000     6.000
    99.017   99.970 100.000

3.728      4.000     5.000
 100.000 100.000

Period 4 10.588 106.000
    0.000

7.844 105.000 106.000
    0.000     0.000

5.811 104.000 105.000 106.000
    0.000     0.000     0.000

4.305 103.000 104.000 105.000 106.000
    0.000     0.000     0.000     0.000

3.189 103.000 104.000
    0.000     0.000

V3 5.032 5.000,〈 〉( )
1

1.05032
--------------------- 0.5[ CF4( 4.305 5.000,〈 〉( ) V4 4.305 5.000,〈 〉( ) )+=

0.5 CF4 5.881 5.000,〈 〉( ) V4 5.881 5.000,〈 〉( )+( )+ ]
1

1.05032
--------------------- 0.5 105.000 0.0+( ) 0.5 105.000 0.0+( )+[ ]=

99.970=

Ĉ
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                       (10)

However, we have calculated neither V3(〈3.728, 4.363〉) nor
V3(〈5.032, 4.363〉) nor the corresponding values for CF3(〈·, 4.363〉), so
we estimate them by interpolating between values that we have calcu-
lated. In particular,

and

while both interpolated values for CF3(〈·, 4.363〉) are, not surprisingly,
4.363. Setting these estimates into equation (10) gives V2(〈4.363,
5.000〉) = 99.695.

Finally, today’s value of the capped FRN is calculated from the
period 1 values by

which puts the value of the periodic cap at 100.000 − 98.336 = 1.664.
As predicted, this is not in precise agreement with the exhaustive path-
by-path analysis that produced the value of 98.343 for the capped FRN
and 1.657 for the periodic cap. This is because we bucketed the state
space of C into the four quantities in . By increasing the number of
states (using more, and smaller, buckets), the degree of error is reduced.
For example, when we take

the recursive process yields 98.341 (1.659 for the periodic cap). 

V2 4.363 5.000,〈 〉( )
1

1.04363
--------------------- 0.5[ CF3 3.728 4.363,〈 〉( ) V3 3.728 4.363,〈 〉( )+( )=

0.5 CF3 5.032 4.363,〈 〉( ) V3 5.032 4.363,〈 〉( )+( ) ]+

V3 3.728 4.363,〈 〉( )
0.637V3 3.728 4.000,〈 〉( ) 0.363V3 3.728 5.000,〈 〉( )+≈
100.000=

V3 5.032 4.363,〈 〉( )
0.637V3 5.032 4.000,〈 〉( ) 0.363V3 5.032 5.000,〈 〉( )+≈
99.363=

V0 6.000〈 〉( )
1

1.06
----------- 0.5 6.0 99.139+( ) 0.5 6.0 97.334+( )+[ ] 98.336= =

Ĉ

Ĉ 3.000 3.500 4.000 4.500 5.000 5.500 6.000, , , , , ,{ }=
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CONCLUSION

We have worked through two simple numerical examples that illustrate
how non-stochastic state variables may be coupled with a stochastic
interest rate process to value path-dependent fixed-income securities
using recursive techniques. In our 4-period examples, of course, this
technique offers little, if any, improvement over exhaustive path sam-
pling. In more realistic settings, however, recursion is generally much
more efficient than Monte Carlo path sampling.

Path dependence occurs in many forms and with varying degrees of
complexity. Sometimes it is necessary to couple more than one state
variable to the stochastic process. Consider, for example, a hybrid of the
IAN and capped FRN. Such a note would pay down principal in accor-
dance with a rate sensitive amortization schedule, while paying a rate of
interest that resets periodically but that is permitted to increase only a
limited amount with each reset. Generalizing the notation of our previ-
ous sections, a state would be described as 〈r, P, C〉 where r is the sto-
chastic risk-free rate, P is the amount of the note currently outstanding,
and C is its current coupon rate.
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he traditional approach to the valuation of fixed-income securities is
to calculate yield—the yield to maturity, the yield to call for a call-

able bond, and the cash flow yield for a real estate-backed security—and
them determine a nominal spread relative to a benchmark Treasury
security. A superior approach employs the option-adjusted spread
(OAS) methodology. Our objective in this chapter is to describe the
Monte Carlo simulation/OAS approach to valuation and apply it to real
estate-backed securities—agency mortgage-backed securities and credit
sensitive mortgage-backed securities (i.e., nonagency mortgage-backed
securities and real estate-backed asset-backed securities). 

T
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In this chapter, we describe the theoretical foundations of this approach
to valuation, the inputs and assumptions that go into the development of a
Monte Carlo simulation/OAS model, and the output of the model, which in
addition to the theoretical value/OAS, also includes the option-adjusted
duration and option-adjusted convexity. Because the user of a Monte Carlo
simulation/OAS model is exposed to modeling risk, it is necessary to test
the sensitivity of these numbers to changes in the assumptions.

Valuation modeling for multi-class structures such as agency collater-
alized mortgage obligations (CMOs) and agency mortgage strips (interest
only and principal only securities) is similar to valuation modeling for
passthroughs, although the difficulties are amplified because the issuer has
sliced and diced both the prepayment risk and the interest rate risk into
smaller pieces called tranches. The sensitivity of the passthrough securities
from which a multi-class structure backed by agency collateral is created
to these two risks is not transmitted equally to every tranche. Some of the
tranches wind up more sensitive to prepayment risk and interest rate risk
than the collateral, while some of them are much less sensitive.

Credit sensitive mortgage-backed securities include a senior tranche
and one or more junior or subordinated tranches. For such securities,
the tranches are exposed to different degrees of credit risk. If the senior
tranches are carved up, they are exposed to different degrees of prepay-
ment risk. Even in the absence of the tranching of prepayment risk for
the senior tranche, prepayment risk exists because in the typical struc-
ture there is a shifting interest mechanism. While the purpose of this
mechanism is to prevent the senior interest in the structure to grow by
shifting a larger share of the prepayments to the senior tranche in the
early years, the net effect is that this form of credit enhancement
increases prepayment risk to the senior tranches.

The objective of the money manager is to figure out how the OAS of
the collateral, or, equivalently, the value of the collateral, gets transmit-
ted to the tranches. More specifically, the objective is to find out where
the value goes and where the risk goes so that the money manager can
identify the tranches with low risk and high value: the ones he or she
wants to buy. The good news is that this combination usually exists in
every deal. The bad news is that in every deal there are usually tranches
with low OAS, low value, and high risk.

STATIC VALUATION

Using OAS to value mortgages is a dynamic technique in that many sce-
narios for future interest rates are analyzed. Static valuation analyzes
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only a single interest rate scenario, usually assuming that the yield curve
remains unchanged. Static valuation results in two measures, average
life and static spread, which we review below.

Average Life
The average life of a mortgage-backed security is the weighted average
time to receipt of principal payments (scheduled payments and pro-
jected prepayments). The formula for the average life is:

where T is the number of months.
In order to calculate average life, an investor must either assume a

prepayment rate for the mortgage security being analyzed or use a pre-
payment model. By calculating the average life at various prepayment
rates, the investor can gain some feeling for the stability of the security’s
cash flows. For example, a planned amortization class (PAC) bond’s aver-
age life will not change within the PAC bands, but may shorten signifi-
cantly if the prepayment rate exceeds the upper band. By examining the
average life at prepayment rates greater than the upper band, an investor
can judge some of the PAC’s risks. With a prepayment model available,
the average life of a mortgage security can be calculated by changing the
mortgage refinancing rate. As the refinancing rate rises, the prepayment
model will slow the prepayment rate and thus cause the bond’s average
life to extend. Conversely, if the refinancing rate is lowered, the model
will cause prepayments to rise and shorten the average life.

Static Spread
One of the standard measures in evaluating any mortgage-backed security is
the cash flow yield, or simply “yield.” The yield spread, sometimes referred
to as the nominal spread, is found by spreading the yield to the average life
on the interpolated Treasury yield curve. This practice is improper for an
amortizing bond even in the absence of interest rate volatility.

What should be done instead is to calculate what is called the static
spread. This is the yield spread in a static scenario (i.e., no volatility of
interest rates) of the bond over the entire theoretical Treasury spot rate
curve, not a single point on the Treasury yield curve. The magnitude of the
difference between the nominal spread and the static yield depends on the
steepness of the yield curve: The steeper the curve, the greater the difference
between the two values. In a relatively flat interest rate environment, the
difference between the nominal spread and the static spread will be small. 

1 Principal at time 1 ( ) … T Principal at timeT ( )+ +

12 Total principal received ( )
-----------------------------------------------------------------------------------------------------------------------------------
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There are two ways to compute the static spread. One way is to use
today’s yield curve to discount future cash flows and keep the mortgage
refinancing rate fixed at today’s mortgage rate. Since the mortgage refi-
nancing rate is fixed, the investor can usually specify a reasonable pre-
payment rate for the life of the security. Using this prepayment rate, the
bond’s future cash flow can be estimated. Use of this approach to calcu-
late the static spread recognizes different prices today of dollars to be
delivered at future dates. This results in the proper discounting of cash
flows while keeping the mortgage rate fixed. Effectively, today’s prices
indicate what the future discount rates will be, but the best estimates of
future rates are today’s rates.

The second way to calculate the static spread allows the mortgage
rate to go up the curve as implied by the forward interest rates. This pro-
cedure is sometimes called the zero volatility OAS. In this case, a prepay-
ment model is needed to determine the vector of future prepayment rates
implied by the vector of future refinancing rates. A money manager using
static spread should determine which approach is used in the calculation. 

DYNAMIC VALUATION MODELING

A technique known as simulation is used to value complex securities such
as passthroughs and CMOs. Simulation is used because the monthly cash
flows are path-dependent. This means that the cash flows received this
month are determined not only by the current and future interest rate lev-
els, but also by the path that interest rates took to get to the current level.

For a passthrough security, prepayments are path-dependent because
this month’s prepayment rate depends on whether there have been prior
opportunities to refinance since the underlying mortgages were issued. For
a CMO tranche, there are two sources of path dependency. The first is the
source just described for passthroughs (i.e., the collateral backing an
agency structure). The second is that cash flow to be received this month by
a CMO tranche depends on the outstanding balances of the other tranches
in the deal. We need the history of prepayments to calculate these balances.

Conceptually, the valuation of passthrough securities using the sim-
ulation method is simple. In practice, however, it is very complex. The
simulation involves generating a set of cash flows based on simulated
future mortgage refinancing rates, which in turn imply simulated pre-
payment rates. 

The typical model that Wall Street firms and commercial vendors
use to generate these random interest rate paths takes as input today’s
term structure of interest rates and a volatility assumption. The term
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structure of interest rates is the theoretical spot rate (or zero coupon)
curve implied by today’s Treasury securities. The volatility assumption
determines the dispersion of future interest rates in the simulation. The
simulations should be normalized so that the average simulated price of
a zero coupon Treasury bond equals today’s actual price.

Each Monte Carlo simulation/OAS model has its own model of the
evolution of future interest rates and its own volatility assumptions.
Until recently, there have been few significant differences in the interest
rate models of dealer firms and vendors of analytical systems, although
their volatility assumptions can be significantly different.

The random paths of interest rates should be generated from an
arbitrage-free model of the future term structure of interest rates. By
arbitrage-free it is meant that the model replicates today’s term structure
of interest rates, an input of the model, and that for all future dates
there is no possible arbitrage within the model. 

The simulation works by generating many scenarios of future inter-
est rate paths. In each month of the scenario, a monthly interest rate
and a mortgage refinancing rate are generated. The monthly interest
rates are used to discount the projected cash flows in the scenario. The
mortgage refinancing rate is needed to determine the cash flow because
it represents the opportunity cost the mortgagor is facing at that time.

If the refinancing rates are high relative to the mortgagor’s original
coupon rate, the mortgagor will have less incentive to refinance, or even
a disincentive (i.e., the homeowner will avoid moving in order to avoid
refinancing). If the refinancing rate is low relative to the mortgagor’s
original coupon rate, the mortgagor has an incentive to refinance.

For agency collateral, prepayments are projected by feeding the refi-
nancing rate and loan characteristics, such as age, into a prepayment
model. Given the projected prepayments, the cash flow along an interest
rate path can be determined. For credit-sensitive products, the prepay-
ment model includes both voluntary and involuntary prepayments (i.e.,
defaults). The prepayment model for collateral backing credit-sensitive
products takes into account default rates, recovery rates, and the time it
takes to recover principal from defaulted mortgages.

To make this more concrete, consider a newly issued mortgage
passthrough security with a maturity of 360 months. Exhibit 17.1 shows
N simulated interest rate path scenarios. Each scenario consists of a
path of 360 simulated 1-month future interest rates. Just how many
paths should be generated is explained later. Exhibit 17.2 shows the
paths of simulated mortgage refinancing rates corresponding to the sce-
narios shown in Exhibit 17.1. Assuming these mortgage refinancing
rates, the cash flow for each scenario path is shown in Exhibit 17.3.
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EXHIBIT 17.1  Simulated Paths of 1-Month Future Interest Rates

EXHIBIT 17.2  Simulated Paths of Mortgage Refinancing Rates

Interest Rate Path Number

Month 1 2 3 … n N

    1 f1(1) f1(2) f1(3) … f1(n) … f1(N)
    2 f2(1) f2(2) f2(3) … f2(n) … f2(N)
    3 f3(1) f3(2) f3(3) … f3(n) … f3(N)

    t ft(1) ft(2) ft(3) … ft(n) … ft(N)

358 f358(1) f358(2) f358(3) … f358(n) … f358(N)
359 f359(1) f359(2) f359(3) … f359(n) … f359(N)
360 f360(1) f360(2) f360(3) … f360(n) … f360(N)

Notation:

ft(n) = one-month future interest rate for month t on path n
N = total number of interest rate paths

Interest Rate Path Number

Month 1 2 3 … n … N

    1 r1(1) r1(2) r1(3) … r1(n) … r1(N)
    2 r2(1) r2(2) r2(3) … r2(n) … r2(N)
    3 r3(1) r3(2) r3(3) … r3(n) … r3(N)

    t rt(1) rt(2) rt(3) … rt(n) … rt(N)

358 r358(1) r358(2) r358(3) … r358(n) … r358(N)
359 r359(1) r359(2) r359(3) … r359(n) … r359(N)
360 r360(1) r360(2) r360(3) … r360(n) … r360(N)

Notation:

rt(n) = mortgage refinancing rate for month t on path n
N = total number of interest rate paths
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EXHIBIT 17.3  Simulated Cash Flow on Each of the Interest Rate Paths

Calculating the Present Value for a Scenario Interest Rate Path
Given the cash flow on an interest rate path, its present value can be calcu-
lated. The discount rate for determining the present value is the simulated
spot rate for each month on the interest rate path plus an appropriate
spread. The spot rate on a path can be determined from the simulated
future monthly rates. The relationship that holds between the simulated
spot rate for month T on path n and the simulated future 1-month rates is:

where

Consequently, the interest rate path for the simulated future 1-
month rates can be converted to the interest rate path for the simulated
monthly spot rates as shown in Exhibit 17.4. Therefore, the present
value of the cash flow for month T on interest rate path n discounted at
the simulated spot rate for month T plus some spread is:

Interest Rate Path Number

Month 1 2 3 … n … N

    1 C1(1) C1(2) C1(3) … C1(n) … C1(N)
    2 C2(1) C2(2) C2(3) … C2(n) … C2(N)
    3 C3(1) C3(2) C3(3) … C3(n) … C3(N)

    t Ct(1) Ct(2) Ct(3) … Ct(n) … Ct(N)

358 C358(1) C358(2) C358(3) … C358(n) … C358(N)
359 C359(1) C359(2) C359(3) … C359(n) … C359(N)
360 C360(1) C360(2) C360(3) … C360(n) … C360(N)

Notation:

Ct(n) = cash flow for month t on path n
N = total number of interest rate paths

zT(n) = simulated spot rate for month T on path n
fj(n) = simulated future 1-month rate for month j on path n

zT n( ) 1 f1 n( )+[ ] 1 f2 n( )+[ ]… 1 f2T n( )+[ ]{ }1 T⁄ 1–=
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where

The present value for path n is the sum of the present value of the
cash flow for each month on path n. That is,

PV[Path(n)] = PV[C1(n)] + PV[C2(n)] + . . . + PV[C360(n)]

where PV[Path(n)] is the present value of interest rate path n.
The option-adjusted spread is the spread, K, that when added to all

the spot rates on all interest rate paths will make the average present
value of the paths equal to the observed market price (plus accrued
interest). Mathematically, OAS is the spread K that will satisfy the fol-
lowing condition:

EXHIBIT 17.4  Simulated Paths of Monthly Spot Rates

PV[CT(n)] = present value of cash flow for month T on path n
CT(n) = cash flow for month T on path n
zT(n) = spot rate for month T on path n
K = spread 

Interest Rate Path Number

Month 1 2 3 … n … N

    1 z1(1) z1(2) z1(3) … z1(n) … z1(N)
    2 z2(1) z2(2) z2(3) … z2(n) … z2(N)
    3 z3(1) z3(2) z3(3) … z3(n) … z3(N)

    t zt(1) zt(2) zt(3) … zt(n) … zt(N)

358 z358(1) z358(2) z358(3) … z358(n) … z358(N)
359 z359(1) z359(2) z359(3) … z359(n) … z359(N)
360 z360(1) z360(2) z360(3) … z360(n) … z360(N)

Notation:

zt(n) = spot rate for month t on path n
N = total number of interest rate paths

PV CT n( )[ ]
CT n( )

1 zT n( ) K+ +[ ]1 T⁄
------------------------------------------------=
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where N is the number of interest rate paths.
This procedure for valuing a passthrough is also followed for a

tranche of interest within a multi-class structure. The cash flow for each
month on each interest rate path is found according to the principal
repayment and interest distribution rules of the deal. In order to do this,
a structuring model is needed. In any analysis of a tranche within a
multi-class structure, one of the major stumbling blocks is getting a
good structuring model.

Selecting the Number of Interest Rate Paths
Let’s now address the question of the number of scenario paths or repe-
titions, N, needed to value a security. A typical run will be done for 512
to 1,024 interest rate paths. The scenarios generated using the simula-
tion method look very realistic, and furthermore reproduce today’s
Treasury curve. By employing this technique, the money manager is
effectively saying that Treasuries are fairly priced today and that the
objective is to determine whether a specific tranche is rich or cheap rela-
tive to Treasuries.

The number of interest rate paths determines how “good” the esti-
mate is, not relative to the truth but relative to the model used. The
more paths, the more average spread tends to settle down. It is a statisti-
cal sampling problem.

Most models employ some form of variance reduction to cut down
on the number of sample paths necessary to get a good statistical sam-
ple.1 Variance reduction techniques allow us to obtain price estimates
within a tick. By this we mean that if the model is used to generate more
scenarios, price estimates from the model will not change by more than
a tick. So, for example, if 1,024 paths are used to obtain the estimated
price for a tranche, there is little more information to be had from the
model by generating more than that number of paths. (For some very
sensitive complex tranches, more paths may be needed to estimate prices
within one tick.)

To reduce computational time, a statistical methodology has been
used by vendors that involves the analysis of a small number of interest
rate paths. Basically, the methodology is as follows. A large number of
paths of interest rates are generated. These paths can be reduced to a

1 For a discussion of variance reduction, see Phelim P. Boyle, “Options: A Monte
Carlo Approach,” Journal of Financial Economics 4 (1977), pp. 323–338.

Market Price
PV Path 1 ( )[ ] PV Path 2 ( )[ ] … PV Path N ( )[ ]+ + +

N
------------------------------------------------------------------------------------------------------------------------------------=
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small representative number of interest rate paths. These interest rate
paths are called representative paths. The money manager is typically
given the choice of the number of representative paths. The security is
then valued on each representative path. The value of the security is
then the weighted average of the representative path values. The weight
used for a representative path is determined by the percentage of the
interest rate paths it represents. This approach is called the representa-
tive path method.

Interpretation of the OAS
The procedure for determining the OAS is straightforward, although
time-consuming. The next question, then, is how to interpret the OAS.
Basically, the OAS is used to reconcile value with market price. On the
left-hand side of the last equation is the market’s statement: the price of
a mortgage-backed security or mortgage derivative. The average present
value over all the paths on the right-hand side of the equation is the
model’s output, which we refer to as value. 

What a money manager seeks to do is to buy securities whose value
is greater than their price. A valuation model such as the one described
above allows a money manager to estimate the value of a security,
which at this point would be sufficient to determine whether to buy a
security. That is, the money manager can say that this bond is 1 point
cheap or 2 points cheap, and so on. The model does not stop here, how-
ever. Instead, it converts the divergence between price and value into a
yield spread measure, as most market participants find it more conve-
nient to think about yield spread than about price differences. 

The OAS was developed as a measure of the yield spread that can be
used to reconcile dollar differences between value and price. But what is
it a “spread” over? In describing the model above, we can see that the
OAS is measuring the average spread over the Treasury spot rate curve,
not the Treasury yield curve. It is an average spread because the OAS is
found by averaging over the interest rate paths for the possible spot rate
curves.

While in our illustrations we have used the on-the-run Treasury
rates as the benchmark, many funded investors will use LIBOR as the
benchmark. To see the impact of the benchmark on the computed OAS,
the table below shows the OAS computed in November 1999 for a 15-
year 6.5% FNMA TBA passthrough (seasoned and unseasoned) and a
30-year 6.5% FNMA TBA using the on-the-run Treasuries and LIBOR:2

2 This table was reported in the November 16, 1999 issue of PaineWebber’s Mort-
gage Strategist, p. 10. The values reported were computed on Bloomberg.
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As can be seen from the table, the selection of the benchmark has a
dramatic impact on the computed OAS. It cannot be overemphasized
that the user of an OAS number should make sure that the benchmark is
known, as well as the volatility assumption.

Option Cost
The implied cost of the option embedded in any mortgage-backed secu-
rity can be obtained by calculating the difference between the OAS at
the assumed volatility of interest rates and the static spread. That is,

Option cost = Static spread 

 

− Option-adjusted spread 

The reason that the option cost is measured in this way is as fol-
lows. In an environment of no interest rate changes, the investor would
earn the static spread. When future interest rates are uncertain, the
spread is less, however, because of the homeowner’s option to prepay;
the OAS reflects the spread after adjusting for this option. Therefore,
the option cost is the difference between the spread that would be
earned in a static interest rate environment (the static spread) and the
spread after adjusting for the homeowner’s option.

In general, a tranche’s option cost is more stable than its OAS in the
face of market movements. This interesting feature is useful in reducing
the computational expensive costs of calculating the OAS as the market
moves. For small market moves, the OAS of a tranche may be approxi-
mated by recalculating the static spread (which is relatively cheap and
easy to calculate) and subtracting its option cost.

Other Products of the Model
Other products of the valuation model are option-adjusted duration,
option-adjusted convexity, and simulated average life.

Option-Adjusted Duration
In general, duration measures the price sensitivity of a bond to a small
change in interest rates. Duration can be interpreted as the approximate

OAS (bps) Benchmark

Issue: 6.5% Coupon FNMA TBA Average Life Treasuries LIBOR

15-year unseasoned 5.9 years 70

 

−10
15-year seasoned (1994 production) 4.0 years 75     1
30-year 9.5 years 87   

 

−2
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percentage change in price for a 100-basis point parallel shift in the
yield curve. For example, if a bond’s duration is 4, this means a 100-
basis point increase in interest rates will result in a price decrease of
approximately 4%. A 50-basis point increase in yields will decrease the
price by approximately 2%. The smaller the change in basis points, the
better the approximated change in price will be. 

The duration for any security can be approximated as follows:

where

The standard measure of duration is modified duration. The limita-
tion of modified duration is that it assumes that if interest rates change,
the cash flow does not change. While modified duration is fine for
option-free securities such as Treasury bonds, it is inappropriate for
mortgage-backed securities, because projected cash flows change as
interest rates and prepayments change. When prices in the duration for-
mula are calculated assuming that the cash flow changes when interest
rates change, the resulting duration is called effective duration.

Effective duration can be computed using an OAS model as follows.
First the bond’s OAS is found using the current term structure of inter-
est rates. Next the bond is repriced holding OAS constant, but shifting
the term structure. Two shifts are used; in one yields are increased, and
in the second they are decreased. This produces the two prices, V

 

− and
V+, used in the above formula. Effective duration calculated in this way
is often referred to as option-adjusted duration or OAS duration.

The assumption in using modified or effective duration to project
the percentage price change is that all interest rates change by the same
number of basis points; that is, there is a parallel shift in the yield curve.
If the term structure does not change by a parallel shift, then effective
duration will not correctly predict the change in a bond’s price.

Option-Adjusted Convexity
The convexity measure of a security is the approximate change in price
that is not explained by duration. Positive convexity means that if yields

V

 

− = price if yield is decreased (per $100 of par value) by 

 

∆r
V+ = price if yield is increased (per $100 of par value) by 

 

∆r
V0 = initial price (per $100 of par value)

 

∆r = number of basis points change in rates used to calculate
V

 

− and V+

Duration
V− V+–

2V0∆r
--------------------=
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change by a given number of basis points, the percentage increase in
price will be greater than the percentage decrease in price. Negative con-
vexity means that if yield changes by a given number of basis points, the
percentage increase in price will be less than the percentage decrease in
price. That is, for a 100-basis point change in yield:

Obviously, positive convexity is a desirable property of a bond. A
passthrough security can exhibit either positive or negative convexity,
depending on the prevailing mortgage rate relative to the rate on the
underlying mortgage loans. When the prevailing mortgage rate is much
higher than the mortgage rate on the underlying mortgage loans, the
passthrough usually exhibits positive convexity. It usually exhibits nega-
tive convexity when the underlying coupon rate is near or above prevail-
ing mortgage refinancing rates.

The convexity of any bond can be approximated using the formula:

When the prices used in this formula assume that the cash flows do
not change when yields change, the resulting convexity is a good
approximation of the standard convexity for an option-free bond. When
the prices used in the formula are derived by changing the cash flows (by
changing prepayment rates) when yields change, the resulting convexity
is called effective convexity. Once again, when a Monte Carlo simula-
tion/OAS model is used to obtain the prices, the resulting value is
referred to as the option-adjusted convexity or OAS convexity.

Simulated Average Life
The average life reported in a Monte Carlo simulation/OAS model is the
average of the average lives along the interest rate paths. That is, for
each interest rate path, there is an average life. The average of these
average lives is the average life reported for the model.

Additional information is conveyed by the distribution of the aver-
age life. The greater the range and standard deviation of the average
life, the more the uncertainty about the tranche’s average life.

Type of Convexity Increase in Price Decrease in Price

Positive convexity X% less than X%
Negative convexity X% more than X%

V+ V− 2 V0( )–+

2V0 r∆( )2
------------------------------------------
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EXHIBIT 17.5  Diagram of Principal Allocation Structure of FHLMC 1915

ILLUSTRATIONS

We conclude this chapter by illustrating how to apply the Monte Carlo
simulation/OAS model using four actual deals: a plain vanilla structure,
a PAC/support structure, and credit sensitive products (a home equity
loan deal and a manufactured housing loan deal).3

Plain Vanilla Structure
The plain vanilla sequential-pay CMO bond structure in our illustration
is FHLMC 1915. A diagram of the principal allocation structure is
given in Exhibit 17.5 for six of the tranches. The structure actually
includes eight tranches, A, B, C, D, E, F, G, and S, and two residual
classes. Tranche F is a floating-rate tranche, and tranche S is an inverse
floating rate IO. Tranches D, E, and G are special “exchangeable
bonds” which allow for the combination of tranches F and S. The focus
of our analysis is on tranches A, B, and C.

The top panel of Exhibit 17.6 shows the OAS and the option cost
for the collateral and the five classes in the CMO structure. The OAS for
the collateral is 51 basis points. Since the option cost is 67 basis points,
the static spread is 118 basis points (51 basis points plus 67 basis
points). The weighted-average OAS of all the classes (including the
residual) is equal to the OAS of the collateral.

At the time this analysis was performed, March 10, 1998, the Trea-
sury yield curve was not steep. As we noted earlier, in such a yield curve

Low Tranches R and S

Structural Tranches F and S

Priority Tranche Tranche 

B C

Tranche A

High

Time

3 For a description of the various types of tranches referred to in the illustrations, see
Frank J. Fabozzi and Chuck Ramsey, Collateralized Mortgage Obligations: Struc-
tures and Analysis, Third Edition (New Hope, PA: Frank J. Fabozzi Associates,
1999).
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environment the static spread will not differ significantly from the tradi-
tionally computed yield spread. Thus, for the three tranches shown in
Exhibit 17.6, the static spread is 83 for A, 115 for B, and 116 for C.

EXHIBIT 17.6  OAS Analysis of FHLMC 1915 Classes A, B, and C (As of 3/10/98)
Base Case (Assumes 13% Interest Rate Volatility)

Prepayments at 80% and 120% of Prepayment Model
(Assumes 13% Interest Rate Volatility)

Interest Rate Volatility of 9% and 17%

OAS
(in Basis Points)

Option Cost
(in Basis Points)

Collateral 51 67
Class
A 32 51
B 33 82
C 46 70

New OAS
(in Basis Points)

Change in Price per $100 Par
(Holding OAS Constant)

80% 120% 80% 120%

Collateral 63 40 $0.45

 

−$0.32
Class
A 40 23 0.17

 

−0.13
B 43 22 0.54

 

−0.43
C 58 36 0.97

 

−0.63

New OAS
(in Basis Points)

Change in Price per $100 Par
(Holding OAS Constant)

9% 17% 9% 17%

Collateral 79 21 $1.03 −$0.94
Class
A 52 10 0.37 −0.37
B 66 −3 1.63 −1.50
C 77 15 2.44 −2.08
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Notice that the classes did not share the OAS equally. The same is
true for the option cost. The value tended to go toward the longer
bonds, something that occurs in the typical deal. Both the static spread
and the option cost increase as the maturity increases. The only tranche
where there appears to be a bit of a bargain is tranche C. A money man-
ager contemplating the purchase of this last cash flow tranche can see
that C offers a higher OAS than B and appears to bear less of the risk, as
measured by the option cost. The problem money managers may face is
that they might not be able to go out as long on the yield curve as the C
tranche because of duration, maturity, and average life constraints.

Now let’s look at modeling risk. Examination of the sensitivity of
the tranches to changes in prepayments and interest rate volatility will
help us to understand the interaction of the tranches in the structure and
who is bearing the risk.

We begin with prepayments. Specifically, we keep the same interest
rate paths as those used to get the OAS in the base case (the top panel of
Exhibit 17.6), but reduce the prepayment rate on each interest rate path
to 80% of the projected rate.

As can be seen in the second panel of Exhibit 17.6, slowing down
prepayments increases the OAS and price for the collateral. This is
because the collateral is trading above par. Tranches created by this col-
lateral will typically behave the same way. However, if a tranche was cre-
ated with a lower coupon, allowing it to trade below par, then it may
behave in the opposite fashion. The exhibit reports two results of the sen-
sitivity analysis. First, it indicates the change in the OAS. Second, it indi-
cates the change in the price, holding the OAS constant at the base case.

To see how a money manager can use the information in the second
panel, consider tranche A. At 80% of the prepayment speed, the OAS
for this class increases from 32 basis points to 40 basis points. If the
OAS is held constant, the panel indicates that the buyer of tranche A
would gain $0.17 per $100 par value.

Notice that for all of the tranches reported in Exhibit 17.6, there is a
gain from a slowdown in prepayments. This is because all of the sequential
tranches in this deal are priced over par. If the F and S tranches were larger,
then the coupon on tranche A would have been smaller. This coupon could
have been made small enough for tranche A to trade at a discount to par,
which would have caused the bond to lose in a prepayment slowdown.
Also notice that, while the changes in OAS are about the same for the dif-
ferent tranches, the changes in price are quite different. This arises because
the shorter tranches have less duration. Therefore, their prices do not move
as much from a change in OAS as a longer tranche. A money manager who
is willing to go to the long end of the curve, such as tranche C, would real-
ize the most benefit from the slowdown in prepayments.
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Also shown in the second panel of the exhibit is the second part of
our experiment to test the sensitivity of prepayments: The prepayment
rate is assumed to be 120% of the base case. The collateral loses money in
this scenario because it is trading above par. This is reflected in the OAS
of the collateral which declines from 51 basis points to 40 basis points.

Now look at the four tranches. They all lost money. Additionally,
the S tranche, which is not shown in the exhibit, loses in a faster prepay-
ment scenario. The S tranche is an IO tranche, and, in general, IO types
of tranches will be adversely affected by an increase in prepayments.

Now let’s look at the sensitivity to the interest rate volatility
assumption, 13% in the base case. Two experiments are performed:
reducing the volatility assumption to 9% and increasing it to 17%.
These results are reported in the third panel of Exhibit 17.6.

Reducing the volatility to 9% increases the dollar price of the collat-
eral by $1.03 and increases the OAS from 51 in the base case to 79 basis
points. This $1.03 increase in the price of the collateral is not equally
distributed, however, among the four tranches. Most of the increase in
value is realized by the longer tranches. The OAS gain for each of the
tranches follows more or less the OAS durations of those tranches. This
makes sense, because the longer the duration, the greater the risk, and
when volatility declines, the reward is greater for the accepted risk.

At the higher level of assumed interest rate volatility of 17%, the
collateral is severely affected. The collateral’s loss is distributed among
the tranches in the expected manner: The longer the duration, the
greater the loss. In this case tranche F and the residual are less affected.

Using the Monte Carlo simulation/OAS methodology, a fair conclu-
sion that can be made about this simple plain vanilla structure is: What
you see is what you get. The only surprise in this structure is the lower
option cost in tranche C. In general, however, a money manager willing
to extend duration gets paid for that risk in a plain vanilla structure.

PAC/Support Bond Structure
Now let’s look at how to apply the Monte Carlo simulation/OAS meth-
odology to a more complicated CMO structure, FHLMC Series 1706.
The collateral for this structure is Freddie Mac 7s. A summary of the deal
is provided in Exhibit 17.7. A diagram of the principal allocation is given
in Exhibit 17.8. 

While this deal is more complicated than the previous one, it is still
relatively simple compared to some deals that have been recently
printed. Nonetheless, it brings out all the key points about application
of OAS analysis, specifically, the fact that most deals include cheap
bonds, expensive bonds, and fairly priced bonds. The OAS analysis
helps a money manager identify how a tranche should be classified.
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EXHIBIT 17.7  Summary of Federal Home Loan Mortgage Corporation—
Multiclass Mortgage Participation Certificates (Guaranteed), Series 1706

Total Issue: $300,000,000 Original Settlement
Date: 3/30/94Issue Date: 2/18/94

Structure Type: REMIC CMO Days Delay: 30
Issuer Class: Agency Payment Frequency: Monthly; 

15th day of monthDated Date: 3/1/94

Original Issue Pricing
(225% PSA Assumed)

Tranche
Original

Balance ($)
Coupon

(%)
Stated

Maturity
Average

Life (Yrs.)
Expected
Maturity

A (PAC Bond) 24,600,000 4.50 10/15/06   1.3     6/15/96 *

B (PAC Bond) 11,100,000 5.00   9/15/09   2.5     1/15/97 *

C (PAC Bond) 25,500,000 5.25   4/15/14   3.5   6/15/98

D (PAC Bond)   9,150,000 5.65   8/15/15   4.5   1/15/99

E (PAC Bond) 31,650,000 6.00   1/15/19   5.8   1/15/01

G (PAC Bond) 30,750,000 6.25   8/15/21   7.9   5/15/03

H (PAC Bond) 27,450,000 6.50   6/15/23 10.9 10/15/07

J (PAC Bond)   5,220,000 6.50 10/15/23 14.4   9/15/09

K (PAC Bond)   7,612,000 7.00 3/15/24 18.8   5/15/19

LA (SCH Bond) 26,673,000 7.00 11/15/21   3.5   3/15/02

LB (SCH Bond) 36,087,000 7.00   6/15/23   3.5   9/15/02

M (SCH Bond) 18,738,000 7.00   3/15/24 11.2 10/15/08

O (TAC Bond) 13,348,000 7.00   2/15/24   2.5   1/15/08

OA (TAC Bond)   3,600,000 7.00   3/15/24   7.2   4/15/09

IA (IO, PAC Bond) 30,246,000 7.00 10/15/23   7.1   9/15/09

PF (FLTR, Support Bond) 21,016,000 6.75   3/15/24 17.5   5/15/19

PS (INV FLTR, Support Bond)   7,506,000 7.70   3/15/24 17.5   5/15/19

R (Residual) —   0.00   3/15/24

RS (Residual) —   0.00   3/15/24

Structural Features

Prepayment
Guarantee:

None

Assumed
Reinvestment Rate:

0%
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EXHIBIT 17.7     (Continued)

EXHIBIT 17.8  Diagram of Principal Allocation Structure of FHLMC 1706 
(as of 3/10/98)

Structural Features

Cash Flow 
Allocation:

Excess cash flow is not anticipated; in the event that there 
are proceeds remaining after the payment of the bonds, 
however, the Class R and RS Bonds will receive them. 
Commencing on the first principal payment date of the 
Class A Bonds, principal equal to the amount specified in 
the Prospectus will be applied to the Class A, B, C, D, E, 
G, H, J, K, LA, LB, M, O, OA, PF, and PS Bonds. After all 
other Classes have been retired, any remaining principal 
will be used to retire the Class O, OA, LA, LB, M, A, B, 
C, D, E, G, H, J, and K Bonds. The Notional Class IA 
Bond will have its notional principal amount retired along 
with the PAC Bonds.

Redemption
Provisions:

Nuisance provision for all Classes: Issuer may redeem the 
Bonds, in whole but not in part, on any Payment Date 
when the outstanding principal balance declines to less 
than 1% of the original amount.

Other: The PAC Range is 95% to 300% PSA for the A–K Bonds, 
190% to 250% PSA for the LA, LB, and M Bonds, and 
225% PSA for the O and OA Bonds.

Low
Tranches R and RS

Tranche
M

Tranches
O

and
OA

Tranches
PF
and
PS

Tranche LB

Structural

Priority Tranche LA

Tranche
C

Tranche
D

Tranche
E

Tranche
G

Tranche
 H

Tranche
J

Tranche
K

High

Time
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There are 19 classes in this structure: ten PAC bonds (including one
PAC IO bond), three scheduled bonds, two TAC support bonds, a floating-
rate support bond, an inverse floating-rate support bond, and two residual
bonds. This deal contains no principal-only (PO) tranches.

The deal also includes an IO tranche, IA, which is structured such
that the underlying collateral’s interest not allocated to the PAC bonds
is paid to the IO bond, which causes the PAC bonds to have discount
coupons (as shown by the lower coupons of the front PACs in Exhibit
17.7). Unlike a typical mortgage-backed security backed by deep dis-
count collateral, prepayments for the front tranches will be faster
because the underlying collateral is Freddie Mac 7s, which was premium
collateral at the time this analysis was computed. Thus, with PAC C the
investor realizes a low coupon rate but a much higher prepayment rate
than would be experienced by such a low coupon mortgage bond.

Tranches A and B had already paid off all of their principal when
this analysis was performed. The other PAC bonds are still available.
Tranche IA is a PAC IO. The prepayment protection for the PAC bonds
is provided by the support or companion bonds. The support bonds in
this deal are tranches LA, LB, M, O, OA, PF, and PS. LA is the shortest
tranche (a scheduled [SCH] bond), while the floating-rate bonds, PF and
PS, are the longest. SCH bonds, as represented by tranches LA and LB,
have PSA bands similar to a PAC bond, but they typically have a nar-
rower window of speeds. Also, they are often much less protected from
prepayment surprises when the bands are exceeded. The LB tranche, for
example, is essentially a support bond, once the PSA bands are broken.

The top panel of Exhibit 17.9 shows the base case OAS and the
option cost for the collateral and all but the residual classes. The collateral
OAS is 60 basis points, and the option cost is 44 basis points. The static
spread of the collateral to the Treasury spot curve is 104 basis points.

The 60 basis points of OAS did not get equally distributed among
the tranches—as was the case with the plain vanilla structure. Tranche
LB, the scheduled support, did not realize a good OAS allocation, only
29 basis points, and had an extremely high option cost. Given the pre-
payment uncertainty associated with this bond, its OAS would be
expected to be higher. The reason for the low OAS is that this tranche
was priced so that its cash flow yield is high. Using the static spread as a
proxy for the spread over the Treasury yield curve, the 103-basis point
spread for tranche LB is high given that this appears to be a short-term
tranche. Consequently, “yield buyers” probably bid aggressively for this
tranche and thereby drove down its OAS, trading off “yield” for OAS.
From a total return perspective, however, tranche LB should be avoided.
It is a rich, or expensive, bond. The three longer supports did not get
treated as badly as tranche LB; the OAS for tranches M, O, and OA are
72, 70, and 68 basis points, respectively.
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EXHIBIT 17.9  OAS Analysis of FHLMC 1706 (As of 3/10/98)
Base Case (Assumes 13% Interest Rate Volatility)

Prepayments at 80% and 120% of Prepayment Model
(Assumes 13% Interest Rate Volatility)

OAS
(in Basis Points)

Option Cost 
(in Basis Points)

Collateral 60   44
Class
C (PAC) 15     0
D (PAC) 16     4
E (PAC) 26     4
G (PAC) 42     8
H (PAC) 50   12
J (PAC) 56   14
K (PAC) 57   11
LA (SCH) 39   12
LB (SCH) 29   74
M (SCH) 72   53
O (TAC) 70   72
OA (TAC) 68   68
PF (Support Fltr.) 17   58
PS (Support Inverse Fltr.) 54 137
IA (PAC IO) 50 131

Base
Case
OAS

New OAS
(in Basis Points)

Change in Price per $100 Par
(Holding OAS Constant)

80% 120% 80% 120%

Collateral 60   63   57 $0.17 −$0.11
Class
C (PAC) 15   15   15   0.00     0.00
D (PAC) 16   16   16   0.00     0.00
E (PAC) 26   27   26   0.01   −0.01
G (PAC) 42   44   40   0.08   −0.08
H (PAC) 50   55   44   0.29   −0.27
J (PAC) 56   63   50   0.50   −0.47
K (PAC) 57   65   49   0.77   −0.76
LA (SCH) 39   31   39 −0.12     0.00
LB (SCH) 29   39   18   0.38   −0.19
M (SCH) 72   71   76 −0.07     0.18
O (TAC) 70   69   72 −0.06     0.10
OA (TAC) 68   69   71   0.07     0.15
PF (Support Fltr.) 17   26     7   0.75   −0.69
PS (Support Inverse Fltr.) 54   75   49   1.37   −0.27
IA (PAC IO) 50 144 −32   0.39   −0.32
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EXHIBIT 17.9  (Continued)
Interest Rate Volatility of 9% and 17%

It should be apparent from the results of the base case OAS analysis
reported in the top panel of Exhibit 17.9 where the cheap bonds in the
deal are. They are the long PACs, which have a high OAS, a low option
cost, and can be positively convex. These are well-protected cash flows.

Notice that the option cost for tranches IA and PS are extremely
high. These two tranches are primarily IOs. An investor who purchases
an IO has effectively sold an option, and this explains the large option
cost. As long as volatility is low, the owner of the IO will be able to col-
lect the premium, because the realized option cost will be less than that
implied by the model.

The next two panels in Exhibit 17.9 show the sensitivity of the OAS
and the price (holding OAS constant at the base case) to changes in the
prepayment speed (80% and 120% of the base case) and to changes in
volatility (9% and 17%). This analysis shows that the change in the pre-
payment speed does not affect the collateral significantly, while the change
in the OAS (holding the price constant) and price (holding OAS constant)
for each tranche can be significant. For example, a faster prepayment
speed, which decreases the time period over which a PAC IO bondholder

Base
Case
OAS

New OAS
(in Basis Points)

Change in Price per $100 Par
(Holding OAS Constant)

9% 17% 9% 17%

Collateral 60   81   35 $0.96 −$0.94

Class

C (PAC) 15   15   15   0.00     0.00

D (PAC) 16   16   16   0.00     0.00

E (PAC) 26   27   24   0.02   −0.04

G (PAC) 42   48   34   0.21   −0.27

H (PAC) 50   58   35   0.48   −0.72

J (PAC) 56   66   41   0.70   −1.05

K (PAC) 57   66   44   0.82   −1.19

LA (SCH) 39   47   24   0.09   −0.18

LB (SCH) 29   58   −4   0.80   −0.82

M (SCH) 72 100   41   1.80   −1.72

O (TAC) 70 103   30   2.03   −1.74

OA (TAC) 68 103   30   2.40   −1.98

PF (Support Fltr.) 17   51 −27   3.11   −2.92

PS (Support Inverse Fltr.) 54 123   −5   4.85   −2.85

IA (PAC IO) 50 158 −70   0.45   −0.48
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is receiving a coupon, significantly reduces the OAS and price. The oppo-
site effect results if prepayments are slower than the base case.

Tranche H, a premium priced medium-term PAC, benefits from a
slowing in prepayments, as the bondholder will receive the coupon for a
longer time. Faster prepayments represent an adverse scenario. The PAC
bonds are quite well-protected. The long PACs will actually benefit from
a reduced prepayment rate because they will be earning the higher cou-
pon interest longer. So, on an OAS basis, our earlier conclusion that the
long PACs were allocated a good part of the deal’s value holds up under
our first stress test.

A slowdown in prepayments helps the support tranche LB and a
speedup hurts this tranche. A somewhat surprising result involves the
effect that the change in prepayments has on the TAC bond OA. Notice
that whether the prepayment speeds are slower or faster, the OAS and
the price increases. This result arises from the structure of the bond. The
prepayment risk of this bond is most prevalent when prepayments
increase sharply, and then soon return to the base speed. This phenome-
non, known as a “whipsaw,” would adversely affect the OA tranche.
Without the use of the framework presented in this chapter, this would
not be intuitively obvious.

The sensitivity of the collateral and the tranches to changes in volatil-
ity are shown in the third panel of Exhibit 17.9. A lower volatility
increases the value of the collateral, while a higher volatility reduces its
value. Similarly, but in a more pronounced fashion, lower volatility
increases the value of IO instruments, and higher volatility decreases their
value. This effect can be seen on the PAC IO tranche IA in Exhibit 17.9.

The long PACs continue to be fairly well-protected, whether the vol-
atility is lower or higher. In the two volatility scenarios, they continue to
get a good OAS, although not as much as in the base case if volatility is
higher (but the OAS still looks like a reasonable value in this scenario).
This reinforces our earlier conclusion concerning the investment merit
of the long PACs in this deal.

Home Equity Loan and Manufactured Housing Asset-Backed 
Securities
Finally, we will apply the Monte Carlo simulation/OAS model to a
home equity loan ABS and a manufactured housing ABS.4 Exhibits
17.10 and 17.11 provide information about these deals. The analysis
was performed on April 14, 2000. Market implied volatility is assumed.

4 This illustration is adapted from Frank J. Fabozzi, Shrikant Ramamurthy, and Lau-
rent Gauthier, “Analysis of ABS,” Chapter 28 in Frank J. Fabozzi (ed.), Investing in
Asset-Backed Securities (New Hope, PA: Frank J. Fabozzi Associates, 2000).
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Exhibit 17.10 shows the information for the home equity loan
ABS—the Residential Asset Securities Corp. (RASC) issued in February
2000. The deal has six tranches. The weighted average life of the
tranches is 3.2 years and the average option cost is 24 basis points per
tranche. Exhibit 17.11 shows the information for the Vanderbilt Mort-
gage and Finance manufactured housing loan deal issued in February
2000. The deal has six tranches with a weighted average life of 6.7
years. The average option cost is 18 basis points per tranche. 

Notice that the average option cost is lower than in the home equity
loan deal. Also note that comparable tranches have lower option costs
and a lower standard deviation for the average life in the manufactured
housing deal versus the home equity loan deal as summarized below:

Manufactured housing prepayments are typically insensitive to
interest rates, while agency mortgage borrowers are much more able to
benefit from refinancing opportunities. Home equity loan borrowers—
first-lien mortgages for subprime borrowers—are less able to profit from
decreasing interest rates to refinance their loans.

Unlike the home equity loan deal shown here, this manufactured
housing structure does not have an outside insurance company guaran-
teeing the payments. Instead, the AAA rating on the senior tranches is
obtained through a schedule of default losses. The lower rated bonds
suffer losses of principal before the senior tranches, thereby allowing for
a AAA rating. Therefore, a complete analysis of the relative value of
these bonds would have to include an opinion of the credit risk of the
underlying loans, in addition to the prepayment analysis described in
detail in this chapter. For the home equity loan deal shown here, the
credit work should focus on the ability and willingness of the outside
insurer to honor its obligations. Conversely, the credit analysis of this
unwrapped manufactured housing deal should center on the strength of
the structure to withstand difficult credit events.

Option Cost Average Life Std. Dev.

Average Life HEL MH HEL MH

3 Years 38 27 0.98 0.73
5 Years 48 18 2.35 2.18
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CHAPTER 18

469

Mortgage Pricing on
Low-Dimensional Grids*

Alexander Levin, Ph.D.
 Senior Developer/Consultant
     Andrew Davidson and Co.

he theory and practice of option pricing suggest that the most time-
efficient pricing structures (trees and grids) should be favored, avoid-

ing the brute-force Monte Carlo simulation whenever possible. How-
ever, it has also become a common and trivial argument that mortgage
pricing does necessitate time-consuming Monte Carlo simulations, and
most mortgage valuation systems employ this method. Otherwise, the
valuation scheme would call for additional dimensions caused by differ-
ent sources of path-dependence.1 Many also believe that mortgage valu-
ation under two- or even three-factor term structure models reveals
value hidden by simple single-factor models. 

We noticed in the past that the major shortcoming of the Monte
Carlo method is not in its speed only, but in the fact it is not structurally
tailored for the goals of one- and multi-factor risk measurement and
management.2 Indeed, all simulations (possibly thousands) are solely

1 See, for example, Chapter 17.
2 A. Levin, “A New Approach to Option-Adjusted Valuation of MBS on a Multi-
Scenario Grid,” in Frank J. Fabozzi (ed.) Advances in the Valuation and Manage-
ment of Mortgage-Backed Securities (New Hope, PA: Frank J. Fabozzi Associates,
1998).

T

* This study is a part of a long-term collaborative work with Jim Daras and Ken
Schmidt at the Dime Bancorp.
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intended to compute one value. This may satisfy the needs of a trader
seeking one accurate price, but is reasonably deemed a waste of time by
risk managers who need many (possibly, approximate) prices to assess,
hedge, and report on each of the risk dimensions. The entire Monte
Carlo scheme has to be rerun for each new pricing point (such as a yield
curve shock)—in sharp contrast to the finite difference methods where
all prices are sought simultaneously.

The purpose of this chapter is to demonstrate that some sources of
mortgage path-dependence are spurious and can be avoided via a simple
problem transformation; others can be “cured” by proper model selec-
tion. Finally, for a “non-curable” path-dependence, we consider using
the Expected Instantaneous Return Method (EIRS)3 complemented by
control variate correction. This idea will lead to a rather accurate
approximation, retaining all structural and computational advantages
of finite difference schemes. The results of our study suggest that most
non-CMO mortgage instruments and even some CMOs can be effi-
ciently priced on finite difference grids. 

INSTANTANEOUS RETURN PDE AND THE
PROBLEM OF PATH-DEPENDENCE

Let us consider a hypothetical dynamic asset market price of which
P(t,x) depends on time t and one generalized market factor x. The latter
can be formally anything and does not necessarily have to be the short
market rate or the yield on the security analyzed. We treat x(t) as a ran-
dom process having a (generally, variable) drift rate 

 

µ and a volatility
rate

 

σ, and being disturbed by a standard Brownian motion z(t)—that
is,

dx = 

 

µdt + 

 

σdz (1)

Instantaneous Return is a random return measured over an infinites-
imal investment horizon and annualized. The essential statement in the
Instantaneous Return concept is a partial differential equation (PDE)
that is traditionally derived by applying the following mathematical
operations:

 

 ■ Ito’s Lemma (a stochastic differential equation) written for the random 
dynamics of price P(t,x) given process (1) for x(t)

3 See Levin, “A New Approach to Option-Adjusted Valuation of MBS on a Multi-
Scenario Grid.”
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 ■ Collecting all the cash flow-related components of Instantaneous 
Return

 

 ■ Finding the mathematical expectation of both sides

 

 ■ Equating the obtained expectation to the risk-free rate r(t,x) prevailing 
on the market plus a return spread (OAS) that investors expect from 
this type of risky financial instruments

We assume that the asset continuously pays a c(t,x) coupon rate and
its balance B gets amortized at a 

 

λ(t,x) rate. Then one can prove that the
price function P(t,x) should solve the following PDE4

(2)

Note that this PDE can be derived following the above listed steps
for the total market value, that is, P times B, and computing all needed
partial derivatives. In particular,

due to the definition of 

 

λ, whereas

 and 

are replaced by zeros because the balance is not an “immediate” func-
tion of the factor. Another way to arrive at equation (2) is to integrate
by parts the expected present value of the principal cash flow and map
thus obtained pricing formula onto the PDE using the “inverse” Feynman-
Kac theorem.5 A notable feature of the above written PDE is that it does
not contain the balance variable, B. The entire effect of possibly random
prepayments is represented by the amortization rate function, 

 

λ(t,x).
Although the total cash flow observed for each accrual period does

4 An introduction of pricing PDE for randomly amortizing instruments goes back at
least to F. Fabozzi and G. Fong, Advanced Fixed Income Portfolio Management
(Burr Ridge: Irwin Professional Publishing, 1994).
5 A. Levin, “Deriving Closed-Form Solutions for Gaussian Pricing Models: A System-
atic Time-Domain Approach,” International Journal of Theoretical and Applied Fi-
nance, 1(3) (1998), pp. 348–376.

r OAS+

expected return

1
P
---∂P

∂t
------ 1

P
--- c λ+( ) λ–+

time return

1
P
---∂P

∂x
------µ

drift return

1
2P
-------∂2P

∂x2
---------σ2

diffusion return

+ +=

                     

Ḃ λB–=

∂B
∂x
------- ∂2B

∂x2
----------
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472 VALUATION MODELING

depend on the beginning-period balance, construction of a finite differ-
ence scheme and the backward induction will require the knowledge of

 

λ(t,x), not the balance. This observation agrees with a trivial practical
rule stating that the relative price is generally independent of the invest-
ment size.

Another important observation is as follows. If we transform the
economy having shifted all the rates, r(t,x) and c(t,x), by amortization
rate

 

λ(t,x), then equation (2) will be reduced to the constant-par asset’s
pricing PDE. It means that a finite difference pricing grid built in the “λ-
shifted” economy should, in principle, have as many dimensions as the
total number of factors or state variables that affect r, c, and λ. In par-
ticular, even if r(t,x) and c(t,x) are functions of time and one factor x,
but λ(t,x,ξ) depends upon an additional state variable, ξ, the grid will
necessarily have all three dimensions, for t, x, and ξ.

This “discount-rate-like” role of the λ-variable is in contrast to
some other state variables that may affect the asset’s value. We already
mentioned that the balance variable drops from the PDE and therefore
does not cause any path-dependence directly. Another class of financial
instruments includes “linear” assets where additional state variables
(such as ξ above) linearly affect the coupon rate only (“perfect” floaters,
for example). For such instruments, a finite difference scheme can some-
times be built without additional axes as we explain later in this chap-
ter. However, in most circumstances, mortgages are not “linear” in
factors and state variables. This problem encourages us to look for a
proper model selection that would enable mortgage pricing on a low-
dimensional grid.

ACTIVE-PASSIVE DECOMPOSITION IN BURNOUT MODELING6

Prepayment burnout is a strong source of path-dependence because future
refinancing activity is affected by past incentives. One can think of a
mortgage pool as a heterogeneous population of participants having dif-
ferent refinancing propensities.7 Once most active mortgagors leave the
pool, future prepayment activity gradually declines. In modeling prepay-
ment burnout, we propose decomposing a mortgage pool into two sub-
pools (components). The “active” component, also known as the “fast”

6 The presentation in this section follows, A. Levin, “Active-Passive Decomposition
in Burnout Modelling,” The Journal of Fixed Income (March 2001), pp. 27–40. 
7 See L. Hayre, “A Simple Statistical Framework for Modeling Burnout and Refi-
nancing Behavior,” The Journal of Fixed Income (December 1994), pp. 69–74, and
“Anatomy of Prepayments,” The Journal of Fixed Income (June 2000), pp. 19–49.
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component, includes all ready-to-refinance mortgagors, whereas the “pas-
sive” (“slow”) component prepays at a speed generally reflecting a typical
housing turnover rate and loan curtailments. Any migration between
these two components is prohibited. 

It can be shown that this simple two-component model is not only
powerful enough to replicate the burnout effect, but is also perfectly
tractable for a much wider range of mortgage valuation and modeling
problems than once thought possible.8 In particular, it cures burnout as
a source of path-dependence because, in complete absence of migration,
each constituent component (active or passive) remains path-indepen-
dent.

Forward Evolution
Let ψ denote the active portion of the pool; then its evolution satisfies
the following ordinary differential equation,

which gets solved by

(3)

where indices a and p refer to the active and passive parts, correspond-
ingly. Assuming that the active speed contains housing turnover and
curtailment, we note that λa − λp is simply the pure refinancing rate. Ini-
tial active part, ψ0, is considered a parameter of prepayment model. The
left-hand side of equation (3) is defined as burnout factor, that is, the
relative growth of the passive component.

Initializing the Burnout Factor for Seasoned Mortgages
Let us consider a problem of valuation and modeling of a seasoned mort-
gage pool having an age of t years. What would it take to recover its cur-
rent burnout stage? If we knew the model’s key parameter ψ0 and the
entire prepayment history for the active and passive prepayment speeds,
λa(τ) and λp(τ), 0 ≤ τ ≤ t, we could find the active part of the pool ψ(t)
from solution (3). Can we solve the same problem without this unreliable,
and not always available, retrospective analysis? The following formula
shows how easy it can be done:

8 See Levin, “Active-Passive Decomposition in Burnout Modeling.”

ψ̇ λa λp–( )ψ 1 ψ–( )–=

1 ψ t( )–
1 ψ0–

-------------------- 1 ψ0 ψ0exp λa τ( ) λp τ( )–[ ] τd
0

t

∫–
 
 
 

+–

1–

=
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(4)

where the overall current pool factor F is observable and the passive
part’s factor Fp can be easily computed using the scheduled amortization
Fsch(t) and the model’s parameter, passive rate λp,

Interestingly enough, the current active part ψ(t) defined by equa-
tion (4) appears to be an increasing function of each of its arguments:
pool factor F, age t, initial value ψ0, and the passive speed λp. It is easy
to see that the important relationship in equation (4) is, in essence,
almost a definitional one. Since the entire mortgage consists of only two
components, knowledge of the total and the passive part uniquely deter-
mines the active part. In its derivation, we have not used any assump-
tions about the particular properties of the active prepayment speed,
λa(τ)—we simply do not have to know it. If the passive rate λp is not
constant, equation (4) will still hold true, but, in order to reconstruct
the current passive factor Fp, we will need to know the entire history of
λp(τ), since issuance. In other words, knowing only the factor and the
age of the pool, as well as the model’s parameters, ψ0 and λp [or histor-
ical λp(τ)], one can reconstruct the current active part, ψ(t). This result
presents a serious practical advantage of the proposed analytical burn-
out model over any other approach that requires the retrospective anal-
ysis of the past prepayment incentives or ad-hoc judgments about the
achieved degree of burnout.

Curing Burnout as a Source of Path-Dependence
Let us consider again equation (3). If ψ0 = 0 or ψ0 = 1, then ψ(t) retains
the initial value, for life (i.e., the mortgage prepayments never vary due
to the burnout effect). This observation agrees with our underlying
assumption that, in a complete absence of migration, initially active
mortgagors will always remain active and passive mortgagors will
always stay passive. Nevertheless, this simple underlying assumption
results in some non-trivial pricing implications. Indeed, the mortgage is
essentially modeled as a portfolio of two instruments. Whereas this
portfolio is certainly path-dependent as its prepayments burn out, each
of the constituent components is not. We therefore can employ low-

1 ψ t( )–
1 ψ0–

--------------------
Fp t( )
F t( )
-------------=

Fp t( ) Fsch t( )exp λp τ( )dτ
0

t

∫–=
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dimensional finite-difference schemes when pricing two mortgages
instead of one and just add up the values. The processing time doubles,
but this is a relatively small cost to pay for getting around path-depen-
dence. The decomposition works only for today’s valuation, not in the
future, because the active-passive mix becomes unknown at forward
nodes. Furthermore, speaking of this simple, but important, opportu-
nity, we have to make sure that the mortgage instrument in question has
no other sources of path-dependence or structural provisions that would
prevent decomposition. Counterexamples include CMO structures,
senior/sub structures, and clean up calls (written for the entire mort-
gage, not for components). 

Valuation Features of Mortgage Servicing Rights
Mortgage servicing rights (MSR) differ from IOs in that they carry some
fixed (non-proportional) dollar income and cost components counted
per loan. For example, a mortgage servicer may receive annually $40
per loan in the form of ancillary income (insurance fees, etc.) and earns
on escrow and floats regardless of the loan size. It is clear that the pro-
portional rate c used in the pricing PDE (2) will now change gradually
with the average loan balance even if the stated servicing spread is con-
stant. Does the existence of non-proportional income or cost create
path-dependence?

Consider the following simple transformation of the fixed dollar
income (or cost):

Income per loan is fixed whereas the average loan balance gradually
amortizes. The only two sources of a particular loan’s amortization are
the scheduled payments and curtailments (refinancing or turnover
would eliminate the loan immediately). Considering assumptions that
underpinned the active-passive decomposition method, we note that the
curtailment process was included in the passive amortization. Since we
assumed that the passive speed (λp) is interest-rate independent, the
same would naturally apply to the curtailment. As the scheduled amorti-
zation is also market-independent, at least for fixed-rate mortgages, we
arrive at the following practically important conclusion: Average loan
balance can be deemed as a function of time only. This conjecture makes
fixed dollar income or cost path-independent. The rest of the MSR valu-
ation is not any different from regular unstructured passthroughs and

Income per $1 of balance Income per loan Number of loans
Total pool balance
------------------------------------------------×=

Income per loan Average loan balance⁄=
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can be carried over using finite difference methods employed for the
active component and the passive component, as explained previously.

VALUATION MODELS FOR STRUCTURED MBS

Let us assume that the mortgage instrument in question has structural
provisions or (other than burnout) sources of path-dependence that
would prevent active-passive decomposition. For example, the issuer
may have a right to clean up the entire pool, any time after the remain-
ing pool factor falls below a predefined level (often 10% or 20%).
Therefore, one can describe this feature as a knock-in American option.
Another example of path-dependence met in non-agency passthroughs is
the senior/sub credit enhancement structure. During the lockout period,
all principal cash flow is directed to the senior class.9 If the MBS in
question is the senior class of such structure, its amortization rate, λ(t)
in PDE (2), becomes a direct function of the remaining senior factor, or,
in the presence of only two classes, the pool factor. The lower the pool
factor is within the lockout period, the larger is the relative principal
distribution paid to the senior class.

Both the clean up knock-in condition and the senior/sub structure
represent sources of path-dependence that would normally require com-
plementing the state space with one additional variable, the pool fac-
tor.10 We will describe here a method that yields a fairly accurate pricing
without an additional dimension. Its idea employs the Expected Instan-
taneous Return Method (EIRS),11 which is an ad-hoc surrogate for
option-adjusted valuation—not particularly sensitive to path-depen-
dence. Used as the base method, it is corrected with a specially con-
structed control variate stripped out of path-dependence and priced on
the same low-dimensional grid. 

The EIRS Method
The simplifying assumption, which underpins the EIRS method, relates
to the time behavior of the static discount spread(s) over the forward
curve. Each cash flow vector used by the method is computed along the
corresponding average-rate path (i.e., convexity-adjusted forwards).

9 In some structures, the sub-class receives the scheduled principal payments.
10 See Dorigan, Fabozzi, and Kalotay, “Valuation of Floating-Rate Bonds.”
11 See Levin, “A New Approach to Option-Adjusted Valuation of MBS on a Multi-
Grid Scenario,” and  “One- and Multi-factor Valuation of Mortgages: Computa-
tional Problems and Shortcuts,” International Journal of Theoretical and Applied Fi-
nance (1999), pp. 441–469.
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Note that the average path for the entire term structure is conditioned
upon the observed market rates. The simplest (“first-order”) hypothesis
has a form of:

therefore, s remains unchanged, at least for a short time horizon. This is
to say that the same average-rate scenario’s cash flow will be priced at
the same static discount spread in the nearest future. Under the first-
order assumption, PDE (2) reduces to the following approximate ordi-
nary differential equation:

(5)

where  is the static (benchmark) convexity of the average-rate sce-
nario cash flow measured with respect to the same factor x. The OAS
approximated according to equation (5) was called EIRS. We therefore
have transformed the instantaneous return linear PDE (2) to a nonlinear
second-order ODE, in which s(x) is a known function of price P(0,x)
uniquely defined by the average-rate scenario cash flow conditioned
upon the initial value of the factor, x(0). The time variable has disap-
peared from the model, therefore, the pricing grid need not be propa-
gated along the t-axis.

Equation (5) can be viewed as an equation for P(0,x) as well as
equation for s(x). To solve it, one needs to know either the base scenario
price, P(0,0), or OAS, and specify two boundary conditions. For an
MBS, for example, one can consider two extreme scenarios for which
the cash flow is practically insensitive to x. The interest rate sensitivity
of the prepayment speed is typically ranged between the turnover rate
and refinancing credit limitations; in addition, the ARM’s coupon is
bound by caps and floors. For these boundary scenarios, the convexity
costs are assumed to be zero—that is,

To solve pricing equation (5) with two boundary conditions, we
apply a finite difference method. Namely, along with the currently
observed forward curve (“base case”) we consider a grid of scenarios

ds t x,( ) dt
t 0=

⁄ 0=

OAS s x( )≈ σ2

2
------ 1

P
---∂2P 0 x,( )

∂x2
------------------------ Cx

static x( )–+ EIRS≡

Cx
static

1
P
---∂2P 0 x,( )

∂x2
------------------------ Cx

static x( )=
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induced by initial shocks of the factor, x(0) = −Ndn∆, ..., −∆, 0, ∆, ...,
Nup∆, for sufficiently small step ∆ and sufficiently large numbers of
“down” shocks Ndn and “up” shocks Nup. Then, we replace

by its finite difference approximation, rewrite equation (5) for every sce-
nario, employ boundary conditions, and solve the obtained system of N =
Ndn + Nup + 1 algebraic equations using the multidimensional Newton-
Raphson iterations.

Some features of the EIRS method make it valuable for pricing path-
dependent MBS. First, the method’s error is due to its underlying
assumption about the static spread’s time behavior, and not directly
related to the problem of path-dependence. The EIRS computational
scheme introduces a systematic error even when pricing instruments
having no path-dependence. In fact, the finite difference scheme used to
solve equation (5) has no time axis and operates with prices or spreads
at time t = 0 where path-dependence simply “does not exist.” All deter-
ministic scenarios comprising the valuation grid are constructed for-
ward in time with path-dependent state variables “naturally” simulated
along those paths, starting with their actual initial values. 

Second, although the method does not propagate the pricing equa-
tion beyond today’s instance of time (t = 0), it actually employs the same
grid of scenarios and cash flows that are used by more conventional,
full-scale finite difference methods (Crank-Nicholson, for example). As
we will see below, this feature naturally makes the EIRS method an
excellent base method to be complemented with a control variate cor-
rection provided by other finite difference methods.

Third, the EIRS method can be applied to financial instruments hav-
ing no dynamic prepayment model available at all. For example, a simple
grid of PSA or CPR speeds can be used instead of a rigorous prepayment
model. Certainly, such a “model” is path-independent, and one can com-
pare pricing results obtained from the EIRS scheme with ones computed
by the Crank-Nicholson method. This important advantage, as we show
later, can be efficiently used for constructing and pricing a control variate.

Since the EIRS method is an ad-hoc approximation intended to value
complex, path-dependent instruments, the method generally does not
require splitting mortgages into active and passive components. As we
explained above, such decomposition allows for a very accurate pricing by
the Crank-Nicholson (or other conventional) finite difference method—
provided there is no path-dependence other than the burnout.

∂2P 0 x,( )

∂x2
------------------------
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Adding a Control Variate
“Control variate” is an auxiliary financial instrument, which (a) is
“close” to the MBS in question and (b) allows for exact or very accurate
valuation on its own. Leaving aside the question of finding mortgage
prices in a closed form, we will assume that the control variate (CV) is
valued with a standard backward inducting Crank-Nicholson method.
Then, the MBS value obtained with the EIRS method is symbolically
corrected as follows:12

(6)

The valuation process starts with pricing actual MBS using the EIRS
method. Then, the control variate is constructed and priced twice—
using the EIRS method and the Crank-Nicholson method—and the dif-
ference is used to correct the original value. Both pricing methods
employed in this chain along with equation (6) end up with a set of val-
ues computed for different factor points at t = 0. 

A legitimate use of the Crank-Nicholson method assumes that the finan-
cial instrument used as control variate is stripped out of path-dependence
(other than the burnout modeled and cured by active-passive decomposi-
tion). Constructing a control variate is a creative task, which takes into
consideration existing path-dependencies and replaces them properly.

Example 1: Valuing MBS with a Clean-Up Call Provision
Clean-up call is an option that becomes exercisable once the pool factor
drops below the clean-up threshold. Prevailing interest rates are not the
only factor affecting the exercise decision. The clean-up feature is itself
designed to reduce expenses of servicing a small pool of loans, not to
take advantage of low interest rates. In addition, the “quality” of collat-
eral may play an essential role in affecting the exercise decision. Every-
thing being even, a pool of delinquent or otherwise credit-impaired
loans will less likely be called. It makes sense to model the clean-up call
exercise “probabilistically,” as an accelerated prepayment option13 (if
interest rates are low, the pool will be more likely to be cleaned up than
if they were high). These comments only explain how we suggest simu-

12 The control variate method is clearly described in J. Hull, Options, Futures, and
Other Derivative Securities, Second Edition (Englewood Cliffs, NJ: Prentice Hall,
1996).
13 This approach was developed with Kenneth Schmidt.

MBS MBSEIRS CVCN CVEIRS–

correction
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18-Levin-MortgagePricing  Page 479  Thursday, August 29, 2002  9:58 AM

http://abcbourse.ir/


480 VALUATION MODELING

lating the clean up exercise decision once the option is knocked in; in no
way do they alter the path-dependent knock-in condition.

In order to construct the control variate, we use the original MBS
subject to the clean up provision, and modify this feature as to eliminate
the path-dependence. The first, most trivial, encouragement would be to
eliminate the clean-up option altogether when constructing the control
variate. For a new or moderately seasoned MBS having a remote clean-
up event, this step could be well justified. However, if the clean-up is
about to be knocked in, the brute elimination of this provision can dras-
tically change the average life and violate condition (a) above. An idea
we propose for constructing the control variate for very seasoned mort-
gages is to use the same (“synchronized”) knock-in time for all scenar-
ios of the finite difference grid, namely, the time corresponding to the
base scenario knock-in condition for the original MBS.

Note that the traditional control variate technique uses the first step
of valuation (in our case, the EIRS method for the original MBS) only to
compute the first term (price) in equation (6). The practical novelty of
our approach is to extract some information on cash flows and timing
of events and apply them when constructing the control variate. Appar-
ently, it becomes possible due to topological identity of the EIRS scheme
and the Crank-Nicholson scheme as shown in Exhibit 18.1.

As an example, we consider an MBS with only an 11% remaining
factor with a 10% stated clean-up threshold. If the rates evolve along the
base path, the clean up is knocked-in four months from now. (After this
option is knocked-in, the pool is not necessarily cleaned up; the exercise
is modeled probabilistically as discussed previously.) For the “up” sce-
narios (factor levels 1 and 2 in Exhibit 18.1A), the clean up is knocked-
in later, for the “down” scenarios (factor level −1 and −2)—sooner.
When constructing the control variate, we synchronize the clean-up
knock-in events as to have them all in four months regardless of the sce-
nario. In such a setting, the clean up does not present a source of path-
dependence. Moreover, when now employing the Crank-Nicholson
scheme to price thus constructed control variate, we can legitimately
apply the active-passive decomposition because both components, active
and passive, are cleaned up synchronously.

Exhibit 18.2 compares the accuracy of three valuation models for
the very seasoned MBS in our example, measured across the factor grid.
A brute liquidation of the clean-up provision in control variate leaves us
with a considerable pricing error, but the more delicate way of replacing
the actual clean-up condition leads to an accuracy found suitable for
trading and risk management.
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EXHIBIT 18.1A  Pricing Grid for a Very Seasoned MBS

EXHIBIT 18.1B Pricing Grid for the Control Variate
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EXHIBIT 18.2  Pricing Errors for a Very Seasoned MBS
(Close to Clean-Up Call)

Example 2: Valuing MBS in Senior/Sub and 
Some CMO Structures
Many non-agency passthroughs (typically not classified as CMOs) are
sliced into “senior” and “sub” pieces in order to enhance the senior
piece’s credit (losses are absorbed by the sub piece). Let us consider this
structure from a senior-class-investor point. The senior class amortization
is path-dependent because the sub piece is locked from getting prepaid
principal14 (60 months is a typical lockout period). Ignoring delinquen-
cies and defaults, the prepaid rate of the entire pool is magnified when
directed to the senior class, in the inverse relation to the senior portion of
the pool. Therefore, the amortization rate, λ, in the pricing PDE appears
to be a function of the remaining pool factor and the senior class factor.

Again, we start with the use of the EIRS method as described previ-
ously and correct its results with the help of a control variate. When con-
structing the control variate, we could simply set the sub class size to zero
(i.e., to treat the senior class as a plain passthough). When the sub class is
relatively small, this could be a decent idea, but, when it is large, such an
assumption seems to be too rough. More rigor can be brought in by essen-
tially drawing on the knowledge of the average life (WAL) for each of the

14 This is referred to as a “shifting interest mechanism.”
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grid scenarios. Indeed, we can attempt to replace the actual senior/sub
structure with a simple unstructured passthrough while selecting prepay-
ment PSA or CPR speeds (one for each grid scenario) to match the actual
average lives. In doing so we, in essence, replace the actual (path-depen-
dent) principal amortization rules with a simple λ = λ(t,x) model that car-
ries no path-dependence, but results in the same grid of average lives.

Note that we again employ some non-trivial information (other
than the price) delivered by the EIRS method implemented for the actual
MBS. Exhibit 18.3 compares the accuracy of the pure EIRS method, and
two EIRS methods with different methods of control variate construc-
tion. The accuracy is drastically improved when the control variate is
designed with the WAL replication.

An anxious reader may immediately attempt to build a virtual bridge
to a nirvana of pricing CMOs on finite difference grids. Indeed, a simple
senior/sub structure prototypes some features of the CMO complexity.
The difference between the senior class of a structured passthrough and
the first class of a CMO is not very significant for the proposed valuation
scheme. Our experiments with the first class of a sequential CMO con-
firms that, constructing the control variate as a passthrough with WALs
matched on the scenario grid allows us to achieve fair pricing accuracy.
We see an exciting research opportunity of pricing more complex CMO
structures by employing the main EIRS scheme complemented by spe-
cially constructed control variates.

EXHIBIT 18.3  Pricing Errors for a Senior MBS Class in a
50/50 Senior/Sub Structure
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CONSIDERATION OF ARMS AND FLOATERS

So far, we have been concerned with sources of path-dependence that
are caused by special provisions or mortgage features affecting the prin-
cipal distribution. In other words, the principal amortization rate (λ)
was considered “path-dependent” since it depended on some additional
state variables such as the pool factor. Adjustable-rate mortgages
(ARMs) present another case of path-dependence where the paid rate (c)
depends on the path of the ARM index (such as 1-year Constant-Maturity-
Treasury, CMT) and its value in the past. There are some interesting
theoretical facts about “linear floaters” (i.e., floating-rate bonds reset-
ting freely and proportionally to the market index). Namely, if 

 ■ the coupon rate c(t,x,ξ) is linear in some additional state variable ξ,
 ■ ξ is linear in factor x,
 ■ variables x (the factor), r (the short rate), and λ (amortization rate) are 

ξ-independent,

then PDE solution P(t,x,ξ) is also going to be linear in ξ, and the diffu-
sion term in the PDE can be computed correctly even without a ξ-axis.15

These conditions suffice for a linear floater resetting discretely, pro-
portionally to an index, possibly with a lookback, but without caps or
floors. In this case, we can put ξ ≡ c. Although the coupon rate c seems
to be a function of past rates, the above conditions guarantee that the
price is linear in ξ, and the ξ-axis is not required. Therefore, discrete
resets as well as lookbacks often found in floaters and ARMs would not
call for additional pricing dimensions themselves—if they were not
capped or floored, and the coupon did not affect prepayments. 

Here is why this simplification is theoretically possible and how a
single-dimension finite-difference grid can be used to price linear float-
ers. In the presence of additional state variable ξ, pricing PDE (2) should
be modified to include the drift term for ξ (note that no new diffusion
term arises since ξ is not a “factor”): 

(7)

Two following main statements justify valuation without an ξ-axis:

15 All these conditions are listed for illustration only; some of them could be relaxed.
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EXHIBIT 18.4  Pricing ARMs: Brownian Bridge versus “Shocked” Index Path

1. The diffusion term in PDE (7) can be correctly computed on a factor-
only grid even if the pricing nodes have differing values of ξ: The lin-
earity conditions exclude any price convexity with respect to ξ.

2. If ξ is centered (i.e., set to its conditional mean path), then the drift
term µξ by definition is equal to zero.

Let us assume that the underlying term structure model is Gaussian.
This means that we can find the mean rate of any maturity measured at
any instance of time between the pricing date and the node date. This
problem is known as constructing the Brownian bridge and is well covered
in stochastic calculus.16 In particular this concept helps us find the mean
coupon by just looking at the index rate at two nodes, the initial and the
current. For example, let us consider a floater indexed to a market rate and
resetting in month 15 (counted from today). In order to meet condition 2
above, all pricing nodes of the finite-difference grid located, say, 30
months from now, employ the Brownian bridge’s mean path for the
floater’s index built between now and month 30. This allows for the com-
putation of the mean index rate for month 15 (the last reset, shown in
bold on Exhibit 18.417). Of course, nodes having different factor levels at

16 See, for example, I. Karatsas and S. Shreve, Brownian Motion and Stochastic Cal-
culus, Second Edition (New York: Springer, 1991).
17 The exact shape of the mean index path may depend on the term structure speci-
fications.
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month 30 will get different expected index levels for month 15, and there-
fore different expected coupon rates (c). This coupon is then used to com-
pute the interest cash flow at every pricing node. The factor-only grid will
ultimately result in the same price as a two-dimensional grid built for both
factor and coupon index—thanks to the linearity conditions. This method
can be used for valuation of regular floaters, ARMs with rare uncapped
resets or with prepayment penalties, rolling CDs, and similar instruments.

Unfortunately, most mortgage instruments are prepayable, and the
redemption rate λ is a function of coupon rate c, clearly violating the lin-
earity concept. Fortunately, most ARMs reset at least once a year with
essential periodic caps and floors. These actual features reduce the cou-
pon path-dependence as well as pricing errors when either the EIRS
method or the Crank-Nicholson method is used directly. The cash flow
for all grid points is constructed “naturally” forward: For each pricing
node, the factor level is assumed to match one for the shocked initial term
structure (see Exhibit 18.4). Exhibit 18.5 depicts a typical pricing error
profile for G2AR6.5 ARM using three, single-dimension, finite-difference
methods. As seen, the 1-year CMT coupon is not a strong source of path-
dependence as the valuation errors for both the EIRS scheme and the
Crank-Nicholson scheme are within the practical trading tolerance. Yet,
more robust results and a slight accuracy improvement are achieved when
complementing the EIRS method with a monthly-resetting control variate
(i.e., formally eliminating any path-dependence).

EXHIBIT 18.5  Pricing Errors for G2AR6.5
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CONCLUSIONS

We have demonstrated that some sources of mortgage path-dependence
are spurious and can be avoided via a simple problem transformation; oth-
ers can be “cured” by a proper model selection. The most notable example
is illustrated with the burnout modeling: Decomposing the mortgage pool
into two path-independent components, “active” and “passive,” properly
simulates the burnout effect and enables using regular finite-difference
pricing methods. Finally, for a “non-curable” path-dependencies, we have
considered employing the EIRS method complemented by a specially con-
structed control variate correction and achieved a suitable trading approx-
imation while retaining all structural and computational advantages of
finite-difference schemes. We have also found that the coupon reset provi-
sions found in typical ARMs do not cause strong path-dependence. 

The results of our study suggest that most non-CMO mortgage
instruments and even some CMOs can be efficiently priced on low-
dimensional finite-difference grids.
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CHAPTER 19

489

The Effect of Mean Reversion on
the Valuation of Embedded

Options and OAS*
David Audley

Consultant

Richard Chin
Consultant

any bonds have embedded options. For example, many corporate
and agency securities have embedded call options in which the

investor effectively sells the right of early retirement to the issuer. Simi-
larly, investors in mortgage-backed securities (MBSs) implicitly sell calls
on the underlying collateral to home owners by granting the right to
prepay their mortgages. In each case, for otherwise identical bonds, the
investor expects to receive a higher yield on a callable bond as compen-
sation for the short sale of the call option.

Option-adjusted spread (OAS) analysis assesses the value of such
embedded options so as to provide investors with valuable insights con-
cerning alternative securities. The OAS on a fairly priced bond is its
average spread over the risk-free rate for a sample of possible interest
rates. The risk-free rate is usually defined as the return on the on-the-
run Treasury bonds. In simple terms, if a callable bond’s OAS is lower

M

* This chapter is based on a research paper written by the authors while employed
by Prudential Securities. 
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than its underlying credit and liquidity spread, it is rich and the investor
is not being compensated for the risk of shorting the call. If the com-
puted OAS is higher than the underlying credit spread, it is attractively
priced. However, this simple rule is complicated by the fact that OASs
are not the product of a fixed formula. Rather, OASs vary depending on
the underlying assumptions made in a particular OAS model. One of the
variables that affects these calculations is the interest rate model on
which the OASs are based. The interest rate model itself is affected by
the presence or absence of a mean-reversion feature.

In this chapter we demonstrate the effect that mean reversion has on
the valuation of embedded options and, consequently, on the calculation
of OASs.

WHAT IS MEAN REVERSION

The modeling of future possibilities for interest rates is central to OAS
analysis. This is a process of simulating uncertain future events. The level
of uncertainty is termed randomness and the key issue is specifying how
random the future can be. As an example, Exhibit 19.1 shows three sets
of random interest-rate paths (scenarios). Each starts at 5% and varies
widely across 10 periods. In time periods 3 and 10, the interest rate path
declines to 0% while other random paths lead to interest rates as high as
40%. Given what we know of American economic and political systems
today, an average interest rate of 0%, 40%, or even 100% is possible,
but the probability is so remote that it may be considered negligible.

EXHIBIT 19.1  Random Interest-Rate Paths without Mean Reversion
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EXHIBIT 19.2  Interest-Rate Paths with Mean Reversion

Guarding against possibly unrealistic levels of interest rates is the
value and essence of mean reversion. As randomly generated interest-
rate levels are produced, an interest rate model that includes mean
reversion “bends” the scenarios back inside some reasonable range of
rates. Thus, as the name implies, the results revert toward the mean
interest rate. Exhibit 19.2 provides a graphic representation of this pro-
cess. Note that rates fluctuate within a much narrower band than would
exist within the envelope shown for a specified level of volatility.

HOW DOES MEAN REVERSION RELATE TO OAS?

The presence or absence of a mean-reversion feature has a direct impact
on the computation of OASs. This is because one of the steps in generat-
ing the OASs is modeling interest rate paths over the life of a security.
The characterization of these future rates can directly affect the pro-
jected cash flows and the value of any embedded put or call options. As
an example, consider MBSs.

MBSs are one type of security whose cash flows are interest-rate
contingent. Decreasing or increasing interest rates may result in acceler-
ating or decelerating prepayment rates. As the first step in calculating
the OAS of an MBS, interest rate paths are generated and used as prox-
ies for monthly interest rates on new 30-year mortgages. With that
information, a prepayment model can determine the likelihood that
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some portion of the home owners will pay off their outstanding mort-
gages. Each of these monthly prepayment evaluations then may be used
to project the expected cash flows and resultant yields for MBSs.

A mean-reversion feature in the rate-process model affects the gen-
eration of random interest rate paths, which in turn are used to predict
future cash flows and yields. The yields themselves are the building
blocks of OAS calculations.

PROBLEMS IN MODELING INTEREST RATE BEHAVIOR

The objective of OAS analysis is to evaluate a security over the range of
interest rate environments that may occur over the life of the security.
This raises two issues: (1) how to model interest rate movements and (2)
how to ensure that the resulting hypothetical interest rate paths are con-
sistent with reality (i.e., with actual historical rate behavior).

Modeling Interest Rate Movement
The first question is the more straightforward of the two. We can assign
a probability distribution to possible interest rate changes over a given
period and then use statistical methods to examine resulting interest rate
behavior. For example, a widely used approach is Monte Carlo simulation.
This involves using sequences of computer-generated random numbers
that have the characteristics of the specified probability distribution to
determine the changes in interest rates from period to period. Typically,
a large number of hypothetical interest rate paths are generated to eval-
uate the effects of embedded options.

Are These Interest Rates Realistic?
Care must be taken to ensure that the set of interest rate paths generated is
consistent with historical interest rate behavior. Even if the period-to-
period changes are reasonable, it does not follow necessarily that the inter-
est rate path as a whole is realistic. This seemingly contradictory result is a
consequence of the statistical properties of random paths as they evolve
over time.

For example, suppose that relative monthly changes in rates have
the bell-shaped probability distribution known in statistics as the nor-
mal distribution. Suppose recent annualized volatilities for Treasury bill
rates are about 15%. We then generate paths for the 6-month Treasury
bill rate using monthly changes that display an annualized volatility of
15%. Exhibit 19.3 shows the range of possible Treasury bill rates that
are obtained after a number of years, given an initial value of 8%. These
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ranges are within three standard deviations of the mean Treasury bill
rate and, therefore, may be expected statistically to contain 99.9% of
the possible outcomes.

While the range after one year is reasonable (rates have moved sev-
eral hundred basis points) the range for longer periods is at odds with
interest rate behavior in the United States. The highest value ever for the
6-month Treasury rates was about 18%, in 1981. The discrepancy
between reality and the statistically generated interest rates reported in
Exhibit 19.3 arises from the fact that this method of generation does not
incorporate the economic or social pressures that are likely to influence
interest rates when they reach historical highs or lows. Instead, it assumes
that interest rates follow a random walk regardless of their level.

It is clear that to model interest rates in a realistic way, the statistical
process has to be modified to incorporate the reversion forces that rates
are likely to experience when they change dramatically. Such modifica-
tions are usually labeled “mean reversion” and their effect is to exert a
downward pressure when rates are too high and an upward pressure
when rates are too low. Before describing these modifications, we first
discuss how mean reversion influences prices and rates in practice.

MEAN REVERSION IN PRICES AND INTEREST RATES

The basic force behind mean reversion is simply that of supply and
demand. If the price of a commodity increases substantially, supply is
likely to increase and demand is likely to decrease, causing downward
pressure on the price. A striking example is provided by the price of silver
in the early 1980s when the Hunt brothers tried to corner the market. As
they caused the price to increase to record levels, unanticipated events
began to occur. People all over the world began selling silver heirlooms,
silver mines that had been closed because they were uneconomical were
reopened and so on. This eventually caused a flood of new supply, prices
declined dramatically, and the Hunts lost several billion dollars.

EXHIBIT 19.3  Range of 6-Month Treasury Bill Rates Generated without
Mean Reversion

After 1 Year 5.1% to 12.5%
After 10 Years 1.9% to 33.2%
After 25 Years 0.8% to 75.9%
After 40 Years 0.5% to 138.0%
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The Federal Reserve Bank strongly influences interest rates and is
unlikely to allow rates to follow a random walk if they are not within
acceptable limits. However, even if an activist central bank did not exist,
the natural business cycle would dictate that rates have some built-in
mean reversion. For example, suppose interest rates rise, which typically
indicates that the business cycle is in a late expansion phase. If rates
keep rising, the higher cost of borrowing reduces the demand for credit
as businesses postpone plans for expansion and consumer spending
declines. The reduced demand for credit eventually forces down interest
rates. Similarly, once rates have declined sufficiently, the lower cost of
borrowing spurs business expansion and consumer spending which, in
turn, causes interest rates to increase.

While this is obviously a very simplistic description of modern busi-
ness cycles, it does describe the basic underlying trends within which
random movements in interest rates are likely to occur. To model inter-
est rate behavior realistically, any statistical model used to generate
interest rate paths should incorporate these likely trends.

INCORPORATING MEAN REVERSION IN THE
INTEREST RATE PROCESS

There are many ways to incorporate mean reversion in the rate genera-
tion process. In general, the objective is to apply a downward trend
when rates are high and an upward trend when rates are low. Around
these trends, interest rate movements are still random and recognize the
myriad, unpredictable forces that affect them. In this section, we
describe a modeling philosophy used in the interest rate process models
found at one dealer firm.

For MBS, explicit generation of interest rate scenarios drives the
prepayment model. The model assumes that month-to-month propor-
tional changes in interest rates have a bell-shaped frequency distribution
with a specified volatility. More precisely, the rates are lognormally dis-
tributed. Within a specified range, rates are allowed to follow a true
random walk in which there are no obvious upward or downward
trends caused by business cycles or other economic or social pressures.
As illustrated in Exhibit 19.2, if rates go above this range, a downward
trend is applied that is proportional to the square of the amount by
which the rate exceeds the upper end of the range. There is a similar
upward trend if rates go below the lower end of the range.

The rationale for this model is two-fold. First, interest rates do follow
a random walk much of the time. It is only when they become too high or
low that predetermined trends should be imposed. While it is not totally
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clear what is too high or too low, one can use historical data to set these
bounds. Second, once rates do exceed these bounds, having mean rever-
sion that is proportional to the square of the distance between the rate
and boundary parallels many models of real-life phenomena. The end
result of this process is an envelope of modeled interest rate paths that
does not go below 2% to 3% at the lower end and does not exceed 22%
to 25% at the upper end. The exact values for the lowest and highest pos-
sible values depend on the specified volatility of monthly changes in rates.

The case for corporate securities is slightly different. The contingency
for the cash flows depends on the value of the security (e.g., the bond may
be called at par after a certain date and the attractiveness of the issuer’s
exercise of the option depends on the embedded option’s market price
and call structure). Accordingly, we concentrate on modeling rates so that
the bond price conforms to reality. As such, an interest rate model with
mean reversion is selected so that the daily proportional price changes
have a bell-shaped frequency distribution with a specified volatility. More
precisely, the prices are lognormally distributed, while the underlying rate
process model is selected so that its mean-reverting effect translates into
appropriate price and yield behavior across the term structure.

EFFECT OF MEAN REVERSION ON OAS

Incorporating mean reversion in an interest rate model that is then used
to compute OASs has a pervasive effect on the calculations. The OASs
on most types of securities differ depending on the presence or absence
of mean reversion. This occurs because mean reversion reduces the long-
term volatility displayed by the sample interest rate paths. While the
month-to-month changes still have the specified volatility, the range of
possible values that rates can take over time is reduced. For example,
after 25 years, the range of possible values without mean reversion
shown in Exhibit 19.3 is 1% to 76%. Using the model with mean rever-
sion, the range is between 3% and about 25%.

Exhibit 19.4 shows OASs and option costs. The option cost mea-
sures the cost to the investor of interest rate volatility. It is approximately
equal to the difference between the traditional spread to Treasuries and
the OASs on three types of securities with embedded options: fixed-rate
mortgage-backed passthroughs, adjustable-rate mortgage passthroughs
(ARMS), and callable corporate bonds. Representative securities are cho-
sen from each group. The two corporates are not actual issues but are
typical of newly issued callable 10-year and 30-year bonds. The follow-
ing are a few of the the specific effects shown:
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 ■ OASs on callable bonds usually are higher with mean reversion
because the reduction in overall volatility tends to reduce the calculated
values of embedded options. The stronger the mean reversion, the
higher the OAS, all other things being equal.

 

 ■ The impact of mean reversion largely depends on the average life or
maturity of the security, since the difference between interest rate paths
generated with and without mean reversion increases over time.
Longer-term bonds exhibit the greatest differences in OAS with mean
reversion. Another important factor is the degree and nature of the
interest rate contingency of the security’s cash flows.

 

 ■ For fixed-rate mortgage passthroughs, OASs decrease between 5 and
12 basis points if mean reversion is removed from the interest rate pro-
cess. For the three passthroughs shown in Exhibit 19.4, the FNMA 9 is
affected most since it has the longest average life. Although the pre-
mium FNMA 12 has a shorter average life than the discount FNMA 8,
it is affected slightly more by the lack of mean reversion due to its
greater prepayment volatility.

 

 ■ Because of their coupon caps, the OASs on ARMs are affected more
than fixed-rate passthroughs. A wider dispersion of interest rate paths
means that when the ARM is capped out, there is a greater loss of
potential coupon interest relative to a similar but uncapped ARM.

 

 ■ The OAS on the 10-year corporate bond changes by about the same
amount as the fixed-rate passthroughs, reflecting their similar average
lives. As expected, the longer corporate is affected more and the OAS
declines by 23 basis points. The call premiums (with the call price start-
ing at 106 in 1995 and declining to 100 over 15 years) mitigate the
effect of not having mean reversion. If the call price is always par, then
the lack of mean reversion reduces the OAS by 29 basis points.

The specified volatility also affects the impact of mean reversion.
The higher the volatility, the greater the divergence between the interest
rate paths generated with and without mean reversion. For example, for
the 30-year callable corporate, the difference in OASs is 23 basis points
at a 15% short-term rate volatility, as shown in Exhibit 19.4. At a 10%
volatility, the difference is only 8 basis points, while at a 20% volatility
the difference increases to 46 basis points.

These results are obviously for a particular type of interest rate pro-
cess and form of mean reversion. However, the general conclusions hold
for any rate or mean-reversion process. The lack of mean reversion
leads to a wider dispersion of interest rate paths than may be realisti-
cally expected in the United States and this, in turn, tends to overstate
the effect of embedded options in fixed-income securities.
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CONCLUSIONS

The valuation of embedded options and option-adjusted spreads is a
complex mathematical process whose results are strongly dependent on
the fundamental assumptions on which the model is based. Before an
investor can apply these results usefully, it is almost a prerequisite to
have an understanding of the factors that can influence the values that a
model produces. An investor needs to be aware of the subtle, or perhaps
not so subtle, effects that particular interest rate models can have before
making investment decisions based on any one specific value of OAS. In
short, the investor needs to determine whether this broadly used valua-
tion metric is generated with or without the mean reversion process.
This provides a good deal of insight as to how much of the answer is
explained by scenarios that are highly divergent from the expected
course of future interest rates.
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Callable note, valuation. See Step-up callable note
Campbell, J., 80
Canabarro, Eduardo, 210
Caplet, value, 365
Capped floating-rate bonds. See Callable capped

floating-rate bonds
valuation, 362–364

Capped FRNs, 436, 438, 441
Caps, 6, 357. See also At-the-money caps; In-the-

money cap; London Interbank Offered
Rate; Periodic caps

valuation, 365–369
Carleton, W.T., 235
Carmel, Jonathan, 241
Cash flow (CF), 126. See also Benchmark; Swaps

assumption, 358
calculation, 421
components, collection. See Instantaneous return
date, 319
discounted present value, 101
discounted value. See Arrears cash flow
discounting, 386. See also Future cash flows
expectation, 352, 372
fixed set, 252
generation, 318
mapping techniques, 223
timing, 94
yield, 443

Cash market, 97
instruments, valuation models, 187

Cash position, 106
Cell-matching technique, 280
Certain economy. See Term structure
Chacko, George, 187
Chambers, D.R., 235
Chan, K.C., 16, 122, 199
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Chance, Don, 32
Cheapest-to-deliver Treasury bond, 207, 293
Chebyshev’s inequality, 129
Chen, Nai-Fu, 219
Cheyette, O., 12, 15
Christensen, B., 158
CIR. See Cox Ingersoll Ross
Clamped spline, 169
Clean-up call provision, 479–483
Clean-up provision, 431

liquidation, 480
Clean-up threshold, 479
Closed-form expression, 122
Coca-Cola, 255
Cogswell, Prescott C., 223
Cohen, Kalman J., 218, 219
Coleman, Thomas S., 197
Collateral

backing, 446
posting, 140
quality, 479

Collateralized mortgage obligations (CMOs), 292–
293, 421–422, 444

complexity, 483
durations, 4
structures, 459, 482–483
valuation, 35

Combined theory, 85–86
Common risk metrics, usage. See Interest rate models
Component models. See Principal component models
Compounding. See Discrete compounding; Period-

icity
Conditional Monte Carlo, 344
Conditional prepayment rate (CPR), 339. See also

Maximum rate-related conditional prepay-
ment rate

Confidence level, 18
Conley, Timothy G., 199
Connect-the-dots models, 96, 97, 102
Consolidation, 154
Constant Maturity Treasury (CMT), 484, 486
Constant Proportional Yield Volatility Model (CP), 197
Constant time step, 55–57
Consumer Price Index, 222
Continuous martingale, 329
Continuous probability distributions, 118
Continuous stochastic calculus, usage, 119
Continuous time. See Term structure

concepts. See Term structure modeling
Continuous time/continuous-state approach, 117,

119
Continuously compounded future rate, 147
Continuously compounded zero rate, 147
Continuously compounded zero swap rate, 143
Control variable, addition, 479
Control variates, 343, 480

correction, 478
Convexity, 255, 317. See also Effective convexity; Fixed-

income instruments; Negative convexity; Option-
adjusted convexity; Option-adjusted spread; Posi-
tive convexity; Price

adjustment, 143
estimation, 144

bias. See Interest rate

Corporate agency debt obligations, 126
Corporate bonds, 242, 282

markets, 95
Corporate portfolio, 283
Corporate securities, 495
Corporate spread duration, 269
Corporate sub-index, creation, 286
Correlations, 141

term structure, 34
Corresponding node, 412
Counterparties

performance, 403
risk/return profile. See Swaps

Coupon paying bonds, 126
Coupon payments, 103, 105
Coupon rate, 484
Coupon Treasuries, hedge portfolio (construction), 229
Coupon-paying bonds, 94
Courtadon, G., 31
Covariance, 217

matrix, 287, 296–297
Cox Ingersoll Ross (CIR) model, 7–11, 15,  122,

224–229. See also Dybvig-adjusted CIR
model; One-factor CIR model

assumption, 199, 204
development, 40
representation, 117
summary, 331
usage, 20, 118, 198, 320

Cox Ingersoll Ross (CIR) one-factor equilibrium term
structure model, 224

Cox, John C., 7, 40, 53, 76, 80, 85, 111, 117, 198,
222, 320

Crank-Nicholson finite-difference method, 119,
478–479, 486

Credit
analysis, 468
curing, 339
derivatives, 140
event, 140
risk properties, 139

Credit sensitive MBSs, 443
Credit-enhanced subsidiaries, 140
Credit-sensitive products, 447
Cross-market consistency issues, 16
Cubic polynomial, 163. See also Piecewise cubic

polynomial
denotation, 151

Cubic spline, 148, 159–161
application, precision (empirical proof), 177–180
approximation, 159
background, 160–161
function, coefficients, 151
interpolation, 153, 159. See also Placewise cubic

spline
iterative solution, 169–175
matrix solution, 183–185
methodology, 161–162, 180

usage. See Interest rate
parameter, 178
practical approaches, 163–177
requirements, 163–166

hypothesis, 162–163
solutions, 167–277
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Culbertson, J.M., 83, 84
Cumulative distribution function, 289
Cumulative swap

valuation lattice, 396, 407
role, 410–412
usage, 403–404

value, 412
Cumulative tracking error, 247, 265
Curing. See Credit curing

threshold, 339
Current-coupon Treasury bonds, 101
Current-coupon Treasury issues, 101
Curve. See Yield curve

fitting techniques, 157
shock. See Parallel spot curve shock

explanatory power, 306
magnitude plausibility, 306–307

Daras, Jim, 469
De la Grandville, O., 159
Debt management policy, 89
Decay factor, 195
Decaying, 195
Decomposition, 475–476. See also Portfolio risk
Deep in-the-money option, 208
Deep out-of-the-money option, 208
Default, 339

losses, 468
rates, 447. See also Risk-adjusted default rates

Defaulted mortgages, 447
Default-free bonds, 36
Default-free government bonds, 30
Default-free returns, 77
Delta. See Options
Dempster, M.A.H., 8
Derivative, discrete approximation, 51
Derivative instruments, 119
Derivative pricing probability measure, 29–32
Derman, Emanuel, 10, 40, 118, 210, 321. See also

Black-Derman-Toy model
Developed-country economies, 89
Diffusion term, 327
Discontinuity, 293
Discount bonds, 99, 116, 121

options, 100
Discount factors, 59, 160. See also Forward dis-

count factor
Discount function, 95, 99–102, 110, 113

approaches, 123
derivation. See On-the-run Treasuries
fitting, 159–160
usage, 106–108. See also Forward rate

Discount rates, 34, 386, 436. See also Future dis-
count rates

Discounted payoff, evaluation. See Securities
Discount-rate-like role, 472
Discrete compounding, 115
Discrete time, 111

modeling, 94
stochastic process, 324
usage. See Term structure

Distribution function. See Cumulative distribution
function

Distributional assumption, 347

Diversification, 243, 279
benefits, 284

Dollar-based risk, 294
Dorigan, 476
Drift, 121. See also Arbitrage-free drift; Short rate;

Systematic drift
term. See Non-stochastic drift term

Dual index amortizing floaters, ten-state two-factor
Markov-HJM model (usage), 16

Duration, 231, 238, 245. See also Collateralized
mortgage obligations; Effective duration;
Option-adjusted duration; Option-adjusted
spread; Securities; Short-end duration;
Zero-coupon bonds

change. See Spread
constraint, 458
increase, 237

Duration-based hedge, 288
Dybvig, P., 8
Dybvig-adjusted CIR model, 10, 15
Dynamic models, 97
Dynamic term structure, 112

models, 96–97
Dynamic valuation modeling, 446–456

Earnings-to-price ratio, 221
Eclectic theory, 85, 112
Econometric prepayment models, 338
Economic assumptions, 232
Economy, slow-down, 88
Effective convexity, 375–378, 455. See also Bonds
Effective duration, 375–378, 454. See also Bonds;

Fixed-income instruments
Efron, B.J., 18
Embedded call options, 489
Embedded options, 187, 249, 357. See also Fixed-

coupon bonds; Floating-coupon bonds;
Securities

valuation, 498
mean reversion, effect, 489

Endogenous parametrization, 122–123
Endogenous short-rate models, 18
Endogenous term structure, contrast. See Exoge-

nous term structure
Engle, Robert F., 202
EQCC Home Equity Loan Trust, 339
Equal-weighted rolling, 202
Equilibrium

evolution, 99
formulation, 225
model, 7, 210. See also General equilibrium

model
selection, 320–323

modeling, 29, 37–38
pricing, 235
supply/demand, 109

Equity options, PDE (usage), 6
Equivalent martingale, 337
Esoteric pools, 292
Estimated market probability measure, 32–33
Euclidean d-space, 324
Eurodollar CDs, 382–384, 390, 393
Eurodollar futures, 205

rates, 383
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Exogenous term structure, endogenous term struc-
ture (contrast), 7–8

Exotic structures, valuation, 369–373
Expectation operator, 109
Expectations hypothesis, 75–80, 109–111. See also

Local expectations hypothesis; Pure expecta-
tions hypothesis; Return-to-maturity expec-
tations hypothesis; Risk-neutral expectations
hypothesis; Unbiased expectations hypothe-
sis; Yield to maturity

Expectations theory, 96, 109
Expected future short-term rates, geometric aver-

age, 78
Expected Instantaneous Return (EIRS)

method, 470, 476–478, 480, 482–483
scheme, 480, 486

Expected outperformance, 245
Expiration date, 409
Expiration values, 415

swaption valuation lattice, interaction, 412–415
Explosions, 16, 20
Exponential moving average, 195
Exposures, 231. See also Active portfolio expo-

sures; Passive portfolio; Portfolio; System-
atic exposures; Term structure

Extensions, 375–378

Fabozzi, F.J., 41, 68, 202, 379, 456, 465, 469, 471,
476. See also Kalotay-Williams-Fabozzi model

Factor, 421
set. See Risk
uncorrelatedness, 230

Factor loadings, 246
Factor model. See also Fundamental factor models;

Macroeconomic factor models; Statistical
factor models; Term structure

definition, 216–217
historical background, 216–217
types, 219–221
usage. See Risk

Factor returns, time series, 219
Factor-only grid, 485
Fair value, determination. See Theoretical fair value
Faires, Douglas, 58, 160
Fama, Eugene F., 79, 216, 221
Federal National Mortgage Association (FNMA),

263, 292, 496
30-year current-coupon OAS, 318

Federal Reserve, 18
H15 series, 17
monetary policy, change, 127
policies, 16

Federal Reserve Bank, 494
Feynman-Kac theorem. See Inverse Feynman-Kac

theorem
Financial instruments, 471
Financial modeling, 326
Finite difference, 323

grid, 485
method, 334, 478. See also Crank-Nicholson

finite-difference method
First principal component, 310. See also Hypotheti-

cal interest rate shocks
interaction. See Volatility

First Union Securities, Inc. (FUSI), 328, 333, 335–
337

prepayment model, 339
proprietary model, 338

First-order hypothesis, 477
Fischer, S., 226
Fisher, Lawrence, 75, 197
Fisher, M., 158, 182
Fixed payments, present value, 388–390
Fixed-coupon bonds, embedded options, 358–362
Fixed-income analysis, 112
Fixed-income instruments, 109, 355

convexity, 357
effective duration, 357
OAS, 375

Fixed-income markets, 4, 120, 137
Fixed-income portfolios, 138

management, 242
Fixed-income products, 137
Fixed-income securities, 138, 187, 222–223, 357
Fixed-rate payer, 380–382, 387, 393–394
Fixed-rate receiver, 382, 393

risk/return profile, 381
Flannery, B., 153
Flat yield curve, 81–82, 86–87
Fleming, M., 137
Flight to quality phenomenon, 138
Floaters, 357, 484–486. See also Dual index amor-

tizing floaters
Floating payments, 382

calculation. See Swaps
present value, computation, 384–388

Floating-coupon bonds, embedded options, 362–
365

Floating-rate bonds, 291, 364. See also Callable
capped floating-rate bonds

valuation. See Capped floating-rate bonds
Floating-rate notes (FRNs), 34, 422, 435. See also

Capped FRNs; Uncapped FRNs
Floating-rate payments, 390
Floating-rate securities, 249
Floors, 6, 357. See also London Interbank Offered

Rate
valuation, 365–369

Fong, H. Gifford, 102, 125, 158, 471
Foresi, S., 40
Forward contract, 381
Forward curve, 14, 477

approach, improvements, 181–182
Forward discount factor, 386, 387
Forward evolution, 473
Forward interest rate, 141
Forward pass, 437–438
Forward rate, 82, 115–116, 180–182. See also

Implied forward rate; Period forward rate
curve, 9
derivation

discount function, usage, 105–106
spot yields usage, 104–105

determination, 400
one-year forward rate, 373
volatility curve, 15

Forward rate agreements (FRAs), 141–143
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Forward start swaps
interest rate volatility, interaction, 409
valuation, 401–409

lattice model, usage, 379
value, computation, 407–408

Forward swap fixed rate, 402
Forward-rate volatility, 12
French, Kenneth R., 221
Friedman, B., 75
Fundamental factor models, 221, 222, 235–238
Future cash flows, discounting, 31, 138
Future discount rates, 446
Future interest rates, 208, 347
Future spot interest rates, 77
Future spot rates, 75, 82, 104
Futures, 293

contract, 293
interest rate, 141
prices, 147
volatility curves, 15

Gamma. See Options
Gaussian distribution, 14
Gaussian elimination. See Tri-diagonal matrix
Gauthier, Laurent, 465
General equilibrium model, 117–118
Generalized Autoregressive Conditional Heteroske-

dasticity (GARCH) model, 16, 145, 201–
203. See also Power function

Generalized Method of Moments (GMM), 199
Geyman, Yury, 295
Gilt curve, information content. See UK gilt curve
Girsanov Theorem, 327

usage, 31
Glasserman, P., 6
Golub, Bennett W., 232, 296, 297, 312
Goodman, Laurie, 209
Government agency debt obligations, 126
Government bonds. See Default-free government

bonds; Plain vanilla government bonds
Government debt, 251

markets, efficiency, 137
Government monetary policy, tightness, 88
Gradient descent, 272
Greenspan era, 18–19
Gruhl, Ivan, 241
GTE Corp., 255
Gultekin, N. Bulent, 223

Hahn, F., 75
Half-life burnout, 339
Hamilton, James, 199
Hanke, B., 68
Hansen, Lars Peter, 199
Harjes, Richard H., 16, 204
Harrison, J., 31
Hayre, L., 472
Heath, David, 11, 20, 40, 210, 211, 321
Heath Jarrow Morton (HJM) model, 11–12, 210–

211, 321. See also Lognormal HJM model
summary, 332–333

Hedge portfolio, construction. See Coupon Trea-
suries

Hedging, 287–289

pressure, 96
problems, 28

Heteroskedasticity. See Generalized Autoregressive
Conditional Heteroskedasticity

definition, 201
Hicks, J., 75, 81
High-yield markets, 269
Historical plausibility, 296
Historical volatility, 196–205, 311
Ho, Jeffrey, 209
Ho, Thomas S.Y., 10, 40, 41, 118, 198, 295, 296
Holding period, 76
Ho-Lee (HL) model, 10–11, 41–43, 118, 198

summary, 330–331
Ho-Lee (HL) SDE, 47
Home equity loan (HEL)

ABS, 465
deal, 468
securities, 465–468

Horizon, 295
Horizon yield curve, 94

determination, 127
Housing turnover, 339
Hull, J.C., 10, 40, 43, 53, 144, 146, 320, 423, 479
Hull-White (HW) lattice, 41, 54–55, 59–60
Hull-White (HW) model, 10, 41, 44–46, 146

summary, 330
Hull-White (HW) SDE, 46, 49, 56
Hull-White (HW) term structure model, 144
Humped shape, 297
Humped yield curve, 74, 81, 85
Hunt brothers, 493
Hunter, W.C., 423
Hypothetical bonds, 229
Hypothetical interest rate shocks

parallel first principal component, 305–306
plausibility, measurement, 295
probabilistic distribution, 296–307

Ibbotson, Roger G., 197
IBM 7090 computer, usage, 218
Immunization techniques, 306
Implied forward rate, 104–106
Implied interest rate caplet volatility, 146
Implied volatility, 196, 205–211

developments, 209–211
practical uses, Black model (usage), 209

Implied yield volatilities, 207, 208
Implied zero-coupon bonds (implied zeros), 229
Importance sampling, 344
Index parameter, 324
Index price basis, 382
Index proxies, 279
Index swaps, 293–294
Indexed amortizing notes (IANs), 422, 425, 429–435

example, 435
maturation, 432
path dependence, 431
valuation, Monte Carlo (usage), 429–431

Inflation linkage, 291
Information

content, 73. See also UK gilt curve
ratio, 268
set, 145
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Informational constraint, 324
Ingersoll, Jr., Jonathan E., 7, 40, 75, 76, 80, 85,

111, 117, 198, 222, 320. See also Cox
Ingersoll Ross

Instantaneous rate of return, 113, 121, 131
Instantaneous return

cash-flow components, collection, 471
PDE, 470–472

Instantaneous standard deviation, 196
Institutional fund, objectives, 85
Insurance policies, 6
Interbank deposit rates, usage, 141
Interest rate. See Future spot interest rates; Futures;

Periodic interest rates; Risk-free interest
rate; Risk-free spot interest rate; Short-term
interest rates; Zero-coupon interest rates

behavior modeling, problems, 492–493
caplet volatility. See Implied interest rate caplet

volatility
derivatives, 34

valuation, 31
dynamics, 49
futures convexity bias, 146
increase, exposure, 77
independence, 475
lattice, 346–350. See also Binomial interest rate

lattice
generation, 40

level, 124, 229
management system, 187
mean reversion, usage, 493–494
movements, 124, 211, 297, 492

evolution, 329
modeling, 492
total historical variability, 304

one-factor model, 327
process, 323–333. See also Stochastic interest

rate process
dynamic, 329
mean reversion, incorporation, 494–495

realism, 492–493
risk. See Portfolio

nonzero market price, 5
scenarios, 319–320, 445
shock, shape, 305
swaps, 95, 409, 429

basics, 379–381
valuation, 381–393

term structure
fitting, cubic spline methodology (usage), 157
theory, 98

values, 177
volatility, 17, 225, 393–394, 495

effect. See Swaptions value
estimation, 145–146
interaction. See Forward start swaps

Interest rate models, 3, 341, 491
aspects, 27
comparison, common risk/value metrics usage,

61–68
empirical/numerical considerations, 16–24
review. See No arbitrage interest rate models
taxonomy, 6–15
usage. See Risk neutral

Interest rate paths, 435, 449, 490
generation, 318
number, selection, 451–452
present value, 450

calculation. See Scenario interest rate path
Interest rate shocks, 300

defining, 303
explanatory power, 296
plausibility, measurement. See Hypothetical

interest rate shocks
representation, 301
shape, plausibility, 307–309

Interest-only (IO) bond. See Planned amortization
class

Interest-only (IO) securities, 444
Internal rate of return (IRR), 103
International Swaps and Derivatives Association

(ISDA), 142
Interpolation, 232

algorithm, 148–153
Interpolation techniques, 142
In-the-money cap, 21–22
Inverse Feynman-Kac theorem, 471
Inverted yield curve, 78
Isolated tracking error, 247, 264
Issue-specific risk calculation, 263
Iteration, 167. See also Multidimensional Newton-

Raphson iterations
Iterative process, 351
Iterative solution. See Cubic spline
i-th principal component, 302, 308
Ito’s lemma, 129–131, 196, 470

James, J., 158, 159
Jamshidian, F., 10
Jarrow, R., 11, 20, 40, 76, 210, 211, 321. See also

Heath Jarrow Morton
Jeffrey, A., 11
Jensen’s inequality, 76, 110–111
Johnson, R. A., 68, 310
J.P. Morgan, 195
Jump diffusion process, 208
Junior tranches, 444

Kalotay, Andrew, 41, 421, 476
Kalotay-Williams-Fabozzi (KWF) discrete process,

48
Kalotay-Williams-Fabozzi (KWF) model, 41, 46–47
Karasinski, Piotr, 10, 38, 40, 210. See also Black-

Karasinski binomial lattice; Black-Karasin-
ski model

Karatsas, I., 485
Karolyi, G.A., 16, 122, 199
Kessel, R.A., 83
King, Benjamin, 220
Klaffky, T.E., 307
Knot points, 159
Konstantinovsky, Vadim, 241
Kroner, Kenneth F., 16, 204
Kuberek, Robert C., 222–224, 236

Large Numbers. See Strong Law of Large Numbers
Latin hypercube sampling, 343–344
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Lattices. See Black-Karasinski binomial lattice;
Hull-White binomial lattice; Hull-White
lattice; Interest rate; Trinomial lattices; Val-
uation

branches, pruning, 60
calibration, 350–354
method, 323, 334–335
model, usage, 346. See also Bonds; Forward start

swaps; Plain vanilla swap; Swaptions
structure, growth, 375

Law of one price, 3, 321
Lee, Sang Bin, 10, 40, 41, 118, 198. See also Ho-

Lee model
Lee, Wai, 202
Legs, 346
Lehman Brothers, 280, 286, 288, 292

Aggregate Index, 143, 284, 291
sigma, 286

Corporate Bond Index, 280, 281
hierarchical industry classification scheme, 250
High-Yield Index, 281
indices, 290
MBS Index, 280, 281, 292

Lemma. See Ito’s lemma
Levin, Alexander, 469–473, 476
Levy, H., 87
Lindner, Peter, 241
Linear algebraic system, 153
Linear assets, 472
Linear equations system (solution), elimination

(usage), 174–177
Linear factor model, 216
Linear floaters, 484
Linear interpolation, 148. See also Placewise linear

interpolation
Lintner, John, 216
Liquidity

amount, 211
requirements, 84

Liquidity preference
hypothesis, 111–112
theory, 80–83, 96

Liquidity premium, 81–82
increase, 86
size, 86

Litterman, Robert, 223
Livingstone, M., 80
Local expectations hypothesis, 75–76, 110
Lock-out period, 430
Log-likelihood function, 145
Lognormal HJM model, 20
Lognormal models, 21–22

usage, 17
Lognormal process, 46
Loinger-term returns, 77
London Interbank Offered Rate (LIBOR), 380

3-month, 192, 381–384, 387–390
3-month cap, 209
caps/floors, 205
usage, 452
values, 417

Long position, 107, 322
Long run mean rate, 44
Longerstacey, Jacques, 193

Long-rate volatility, 8
Long-run equilibrium variance, estimation, 202
Longstaff, F.A., 16, 40, 122, 199, 201
Longstaff-Schwartz model, 201
Long-term positions, 287
Long-term yields, 74
Lookbacks, 484
Low-dimensional grids, mortgage pricing, 469
Low-discrepancy sequences, 344
Low-order polynomials, 150
Luttmer, Erzo G.J., 199
Lutz, F., 77

Ma, Y.Y., 307
MacBeth, James, 221
Macroeconomic factor models, 219–221
Magnitude plausibility, 296. See also Curve
Malvey, Jack, 241
Malz, A.M., 139
Manufactured housing asset-backed securities,

465–468
Market, 95

data points, 150
imperfections, 34
implied volatility, 465
information, 121
observation index, 149
prices, 35, 36, 125. See also Risk
random behavior, 421
risk, 30

sources, estimation, 290
segmentation, 84
structure, 329
yield-curve information, 99

Market-determined interest rates, 159
Market-determined node points, 160
Market-weighted averages, 285
Marking to market, 138
Markov model. See Short-rate Markov models;

Two state Markov model
Markov process, 325
Markov property, 8, 325
Martingale, 324–326. See also Continuous martin-

gale; Equivalent martingale
equivalence, 337
measure framework, 322
movement, 327
property, 326

Matrix solution. See Cubic spline
Mattur, Ravi, 241
Maturity, 108, 113, 133, 238. See also Term-to-

maturity
constraint, 458
dates, 154, 291, 323
function, 116, 134
increase, 74
length, 181
usage, 350, 364

Maximum rate-related conditional prepayment
rate, 339

McCulloch, J., 158
McEnally, R.W., 235
Mean index path, shape, 485
Mean rate. See Long run mean rate
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Mean reversion, 121–122, 225–228. See also Term
structure

constant, 121
decrease, 55
definition, 490–491
determination, 55
effect, 490. See also Embedded options; Option-

adjusted spread
feature, 492
form, 496
function, 56
incorporation, 44. See also Interest rate
labeling, 493
negativity, 15
rate, 38, 45, 146

determination, 13
estimation, 144–145

relationship. See Option-adjusted spread
strength, 10
usage, 493–495. See also Interest rate; Price

Mean reverting Gaussian (MRG) model, 10, 20–22
usage, 20
value, 23

Mean value, examination, 192–193
Means, 217
Memoryless property, 325
Merchant, Greg, 29
Merrill, C.B., 7
Merrill Lynch, 29
Merton, R., 320
Metrics, production, 41
Modeling risk, 458

exposure, 444
Modigliani, F., 85
Moments, 217

matching, 343
Monetary Policy Committee (MPC), 88
Money

manager, 444, 451
substitute hypothesis, 83
supply, easing, 88

Monte Carlo. See Conditional Monte Carlo
approach, 119, 428
method, 5, 323, 334–337

shortcoming, 469
path sampling, 436
procedure, 18
usage, 429. See also Indexed amortizing notes;

Periodic caps
Monte Carlo simulation, 329, 343–344, 428, 455

description, 443
model, 456
usage, 492. See also Residential real estate-

backed securities
Mortgage servicing rights (MSR), valuation fea-

tures, 475–476
Mortgage-backed securities (MBS), 12, 139, 477,

489–491
market, 269
passthroughs, 280
prices, 318
valuation, 317, 479–483
volatility, 255

Mortgages

burnout factor, initialization. See Seasoned mort-
gages

holders, 318
instruments. See Non-CMO mortgage instru-

ments
loans, 455
passthroughs, 6, 12, 292
pricing. See Low-dimensional grids
refinancing rates, 446
risk, 251
two state Markov model, usage, 16

Morton, Andrew, 11, 20, 40, 210, 211, 321. See
also Heath Jarrow Morton

Moving average. See Exponential moving average
Multi-class structures, 444, 451
Multidimensional Newton-Raphson iterations, 478
Multidimensional problems, 336
Multi-factor framework, 8

usage, reasons, 244–245
Multi-factor problem, contrast. See One-factor

problem
Multi-factor risk models, applications, 7, 34, 241
Multi-period case, 424–425
Multi-period forward rates, 105
Municipal debt, 126

Narrow indices, contrast. See Broad indices
Natural logarithm, 348
Negative convexity, 455
Nelson, Charles R., 148, 158, 235
Ng, Victor K., 211
No arbitrage equations, 57–59, 70–71
No arbitrage interest rate models

appendix, 70–72
review, 39

No arbitrage model, 210
No arbitrage opportunities, 210, 321
No arbitrage polynomial, 57–58
No-arbitrage condition, 108, 350
No-arbitrage principles, 355
No-arbitrage relationship, 9
Node-dependent risk-free rate, 425
Nodes, 346, 412. See also Corresponding node

call price, 358
linear equations, 174
number, 177
points. See Market-determined node points
touching, 164
value, determination, 348–350
weights, obtaining, 404–407

Noise, amplitude, 122
Nominal spread, 445
Non-agency passthroughs, 482
Non-callables, 95
Non-CMO mortgage instruments, 470
Non-index securities, risk modeling, 290–294
Non-linear curve modeling techniques, 148
Non-proportional income, 475
Non-stochastic drift term, 8
Non-stochastic evolution equation, 13
Non-stochastic state variable, 423
Nonsystematic risk, 261, 274, 290
Nonsystematic tracking error, sources, 255–263
Non-Treasury securities, 222
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Non-trivial pricing implications, 474
Notes. See Floating-rate notes; Indexed amortizing

notes
Notional amount, 379
Notional principal, 379, 396
Nozari, A., 307
Numerical error, minimization, 59
Numerical solution technique, 119
Nychka, D., 158, 182

Obazee, Philip, 315
Observations (number), determination. See Stan-

dard deviation
Off-the-run Treasuries, 95
Oldrich, A., 102
One-factor CIR model, 229
One-factor equilibrium term structure model. See

Cox Ingersoll Ross
One-factor model, 7, 18, 34, 345. See also Interest

rate
representation, 347

One-factor problem, multi-factor problem (con-
trast), 6–7

One-factor SDE, 42
One-period bonds, 80, 108
One-period forward rate, 104, 105
One-period forward return, 105
One-period interest rates, 393
One-period investment, 104
One-period spot rate, 76, 104
On-the-run issue, 353
On-the-run par yield curve, 351
On-the-run Treasuries, 287

discount function, derivation, 101–102
reference set, 101

On-the-run yield curve, 377
Open-market operations, 89
Optimization, 271–279
Option cost, 453, 462
Option-adjusted convexity, 444, 453–455
Option-adjusted duration, 293, 444, 453–454
Option-adjusted spread (OAS), 37, 357, 375, 450.

See also Fixed-income instruments; Securities
allocation, 462
analysis, 318, 333
approach, 333–337, 443
building blocks, understanding, 315
computation, 453
convexity, 455
development, 452
duration, 454
implementation, 334
interpretation, 452–453
mean reversion

effect, 495–497
spread, 491–492

models, 223, 455
results, 68
usage. See Residential real estate-backed securities
valuation, mean reversion (effect), 489

Option-adjusted valuation, 476
Optionality

report, 252
risk, 251

Option-free bond, 354, 358
value, 358–359

Optionless bond, value, 359
Option-like derivatives, 187
Option-like securities, 376
Options, 357. See also At-the-money options

delta, 252
gamma, 252
valuation. See Bonds

Ordinary differential equation (ODE), 123
Ornstein-Ulhenbeck process, 328
Oscillations

effects, 171
number, 177
observation, 179
usage, 178

OTR curve, 307, 311
OTR Treasury curve, 311
Out-of-index portfolio holdings, 291
Outperformance. See Expected outperformance

PaineWebber, 452
Par priced bond, 127
Par yield curve, 350. See also On-the-run par yield

curve
Parallel first principal component, 305
Parallel spot curve shock, 305–307
Parametric methods, 157
Parametrization. See Endogenous parametrization
Par-coupon yield, 96

curve, determination, 94, 127
Partial differential equation (PDE), 119, 123, 322,

470. See also Instantaneous return; Zero-
coupon bonds

approach, 125
asset pricing, 333–334
derivation, 471
diffusion term, 485
usage, 476–477. See also Equity options

Partial differentiation, 329
Passive managers, 244
Passive portfolio

risk exposures, 275
tracking error, usage, 274

Passthroughs. See Mortgages
Path dependence, 421

knock-in condition, 480
problem, 470–472
sensitivity, 476
source, 469, 473–475

Path-dependent claims, valuation, 334
Path-dependent prepayments, 446
Path-dependent present value, 427
Path-dependent securities, valuation, 421
Paths. See Interest rate paths; Representative paths
Pay fixed swaption, 409–415
Payer, swaption, 409
Pay-fixed swap, 401
Performance period, 231
Period forward rate, 386
Period-by-period cash flow, 427
Periodic caps, 422, 425, 435–441

valuation, Monte Carlo (usage), 435–436
Periodic interest rates, 379–380
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Periodicity, compounding, 102
Perpetual-coupon bonds, 291
Piecewise cubic polynomial, 159
Placewise cubic spline

construction, 151–153
interpolation, 150–153

Placewise linear algorithm, 148–150
construction, 149–150

Placewise linear interpolation, 148
Plain vanilla government bonds, 137
Plain vanilla structure, 456–459
Plain vanilla swap, 380

valuation, lattice model (usage), 393–401
Planned amortization class (PAC), 456, 459–465

bands, 445
IO bond, 462
IO tranche, 465
securities, 292

Plausibility. See Historical plausibility; Magnitude
plausibility; Shape

Pliska, S., 8, 31
Pogue, Jerry A., 218, 219
Poisson process, 324–325, 329
Polhman, Lawrence, 295
Polynomial, 159. See also Low-order polynomials;

No arbitrage polynomial; Piecewise cubic
polynomial

denotation. See Cubic polynomial
start/end, 161

Pools. See Esoteric pools
Portfolio. See Proxy portfolios

analytics platform, 271
excess return, 217
expected returns, 245
exposures, 269
interest rate risk, 21
management. See Risk models
manager, 237. See also Bonds
sigma, 266
term structure exposure, 277
tracking error, 219
underperformance probability, estimation, 289–

290
yield, 245

Portfolio risk
decomposition, 218
nonsystematic components, 267
reduction, 271

Positive convexity, 454–455
Power function

GARCH model, 203–205
model, 197–201, 203
volatility, 203

Preferred habitat
hypothesis, 111
theory, 85, 96

Preferred stock, 291
Prepayments

burnout, 472
modeling approaches, 338–341
models, 316, 445. See also Econometric prepay-

ment models; Rational prepayment models;
Reduced-form prepayment models

options, 479

rates, usage, 446
risk, tranching, 444
slowdown, 458
speed, 255, 464
vendors, 338

Present value (PV), 113. See also Cash flow; Fixed
payments; Path-dependent cash flow; Zero-
coupon bonds

calculation. See Interest rate paths; Scenario
interest rate path

computation. See Floating payments
definition, 319
expression, 99

Press, W., 153
Price. See Futures; Law of one price; Market; Secu-

rities; Strike prices
behaviors, 329
convexity, 485
equation, derivation, 132–135
mean reversion, usage, 493–494
sensitivity. See Bonds
value, divergence, 452

Price-yield curve, 317
Price/yield equation, 112
Price/yield relationship, 99, 113
Pricing. See Arbitrage-free pricing; Equilibrium;

Low-dimensional grids
nodes, 485
rule, 322

Principal component. See Hypothetical interest rate
shocks; Parallel first principal component

coefficients, 301–302
models, 222, 229–232

scaling, 231
optimization, 304

Principal, return, 438
Principal-only (PO) securities, 444
Probabilities. See Arbitrage; Realistic probabilities;

Risk neutral; Risk-adjusted probability
artificial distribution, 36
distributions, 119
estimation. See Portfolio
measure. See Derivative pricing probability mea-

sure; Estimated market probability measure
space, 326

Production opportunities, 225
Proportional yield volatility, 197–200
Proxy portfolios, 278–285
Prudential Securities, 93, 489
PSA, 246, 339

bands, 462
Pseudo-random numbers, 335
Pure discount bonds (PDBs), 14
Pure expectations hypothesis, 77–78
Put option, 373
Putable bond, valuation, 359–362
Put-call parity, usage, 14
Puts, 291

Qualitative theories, 96
Quantitative risk management, 28
Quantitative theories, 96
Quartic splines, 158
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Ramamurthy, Shrikant, 465
Ramsey, Chuck, 456
Random boundary values, 336
Random coefficients, 336
Random numbers. See Pseudo-random numbers
Random variables, 301, 325
Randomness, effect, 122
Range floater, 369
Range note, valuation, 372–373
Rational prepayment models, 338
Real rate, 225
Realistic probabilities, 32–33
Real-valued stochastic process, 324
Receive fixed swaption, 410
Recouponing, 140
Recovery rates, 447
Recursive valuation, 431–434, 436–441

pass, 438–441
process, 358
usage, 350, 369

Reduced-form prepayment models, 338
Reduction due to call, 252
Reference

rate, 362, 372, 410
set, 95, 98. See also On-the-run Treasuries; Secu-

rities; Vanilla reference set
yield, 95

Refinancing
rates. See Mortgages
threshold, 339

Regression
coefficients. See Multiple regression coefficients
usage, 35

Representative paths, 452
method, 452

Repurchase agreement (repo), 139
Reset

dates, 146
formula, 363

Residential Asset Securities Corp. (RASC), 468
Residential real estate-backed securities, valuation

illustrations, 456–468
Monte Carlo simulation, usage, 443–447
OAS, usage, 443–447

Residual classes, 462
Residual variance matrix, 218
Return

spread, 471
variance, 261

Return-to-maturity expectations hypothesis, 75, 79,
110

Return-to-maturity hypothesis, 110
Reversion speed/level, 328
Richard, Scott F., 222, 225
Risk. See Dollar-based risk; Optionality; Term

structure
analysis, 245
budgeting, 268–271
categories, 247
decrease, 134
exposures. See Passive portfolio
factor, 218, 242. See also Systematic risk

set, 244
management. See Quantitative risk management

market price, 121
measurement, factor model usage, 217–219
modeling. See Non-index securities
neutrality, assumption, 5
preference, 112. See also Aggregate risk prefer-

ence
premium, 124, 218, 268
properties. See Credit
quantification, 242–243

view, association, 268
reduction transactions, 274
sources, estimation. See Market
tranching. See Prepayments

Risk models
applications, 267–290. See also Multi-factor risk

models
outputs, 266–267
portfolio management, 243–244

Risk neutral
equilibrium models, 35
interest rate

model, usage, 35–38
scenarios, 32

model, 32–35
probabilities, 5, 29–32

measure, 32
valuation, 30–31

Risk report, 245–167
Risk-adjusted default rates, 36
Risk-adjusted probability, 329
Risk-based term structure theories, 111
Risk-free arbitrage, 27
Risk-free interest rate, 76
Risk-free rates, 9, 120, 124, 424. See also Node-

dependent risk-free rate
expectation, equating, 471
usage, 322, 489

Risk-free return, instantaneous rate, 319
Risk-free spot interest rate, 29
Riskless arbitrage, 119
Riskless rate, 321
RiskMetrics, 194–195, 223

model, 223, 232
monthly dataset, 297, 305

Risk-neutral economy, 327
Risk-neutral expectations hypothesis, 76
Risk-neutral probability

consistency, 337
obtaining, 322
simulation, 337

Ritchken, P., 12
Rogalski, Richard J., 223
Roll, Richard, 219
Roller coaster swap, 380
Ronn, Ehud I., 295, 310
Ross, Stephen A., 7, 40, 53, 76, 80, 85, 111, 117,

198, 216, 219, 222, 320. See also Cox
Ingersoll Ross

Roughness penalty, 182. See also Variable rough-
ness penalty

Rubinstein, M., 53, 77

Salm, Michael, 295
Salomon Brothers, 423

IntRateIndex  Page 510  Thursday, August 29, 2002  10:05 AM

http://abcbourse.ir/


Index 511

Sampling. See Importance sampling; Latin hyper-
cube sampling; Stratified sampling

Sanders, Anthony B., 16, 122, 199
Sankarasubramanian, L., 12
Satyajit, D., 148
Scenario interest rate path, present value calcula-

tion, 449–451
Scheduled bond, 462
Scheinkman, José A., 199, 223
Schmidt, Kenneth, 469, 479
Scholes, M., 6, 320
Schwartz, Eduardo, 40, 198, 201
Seasoned mortgages, burnout factor (initialization),

473–474
Seasoning period, 338
Sector, 95

exposures, change, 277
spreads, 249, 264

Securities
analysis, 119
discounted payoff, evaluation, 337
duration, 454
embedded options, 495
OAS, 377
price, 252, 336
quantitative analysis, 3
reference set, 125
risk modeling, estimation. See Non-index securi-

ties
valuation, 222. See also Path-dependent securities
volatilities, 244

Segmentation hypothesis, 83–85
Segmented markets theory, 83
Semiannual pay swap, 410
Semi-logarithmic graph, 96
Senior class amortization, 482
Senior tranche, 444
Senior-class-investor point, 482
Senior/sub structures, 476, 482–483

prototypes, 483
Shape. See Humped shape

plausibility, 296, 308. See also Interest rate;
Short-end duration

Sharpe, William F., 216, 218
Sheer, Irwin, 295
Shifting interest mechanism, 482
Shiller, R., 75
Shocks. See Interest rate shocks

application. See Short-end duration
decomposition, 308

Short position, 107, 322
Short rate, 31, 39, 59, 484

drift, 43
general models, 42–53
process, 337
up state, 54
volatility, 8
yield curve, contrast, 8–15

Short-dated bonds, 76
Short-dated debt, 85
Short-dated zero-coupon bonds, 77
Short-end duration (SEDUR), 307

shape plausibility, 309
shock, application, 307

Short-rate distribution, 23
Short-rate dynamics, 11
Short-rate Markov models, 11, 16
Short-rate models, 9. See also Endogenous short-

rate models
Short-rate volatility, 10, 14, 20

decrease, 15
dependence, 12

Short-term bonds, 88
Short-term interest rates, 78, 87, 90, 144, 423

change, standard deviation (estimation), 145
depiction, 393

Short-term liquid bonds, holding, 84
Short-term nominal interest rate, 222
Short-term rate, 225–226, 422

reversion, 225
Shreve, S., 485
Siegel, Andrew F., 148, 158, 235
Sigma, 266. See also Benchmark; Lehman Brothers;

Portfolio
Simulated average life, 453, 455–456
Simulated spot rate, 449
Simulation

methods, 6, 12
techniques, 306

Singh, G., 141
Single-dimension finite-difference grid, 484
Single-period case, 423–424
Single-period return, 108
Sinking fund provisions, 291
Sleath, J., 158, 182
Sochacki, J., 52
Spindel, Mark, 211
Spline. See Clamped spline; Cubic spline; Quartic

splines
differential, 162
functions, usage, 135
smoothing criteria, 161

Spline-fitting procedure, 127
Spot curve

shape, 7
shock, 305. See also Parallel spot curve shock

Spot interest rate. See Future spot interest rates;
Risk-free spot interest rate

Spot key rates, 297
Spot rate, 79, 113, 355. See also Future spot rates;

One-period spot rate; Simulated spot rate
calculation, 123–124
curve, 8, 17
function, 121
increase, 86
models, 121–124, 222–224, 232–235

Spot yield, 103, 113–114, 117, 199
curve, 95, 98, 102–103, 116
usage. See Forward rate

Spread. See Nominal spread; Static spread
duration, change, 249
factors, 291
scenarios, defining, 286–287

Square root model, 198
Standard Default Assumption (SDA), 339
Standard deviation, 131, 144. See also Instanta-

neous standard deviation
analysis, 189–192
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Standard deviation (Cont.)
calculation, historical data (usage), 188–195
observations

number, determination, 189
weighting, 193–195

principal component shocks, 300
State space, 324

selection, 434–435
State variables, 337, 472, 484. See also Non-sto-

chastic state variable
value, 38

State-dependent period cash flow, 424
State-space prices, 225
Static duration, 252
Static models, 97
Static spread, 445–446
Static valuation, 444–446
Stationary variance, 345
Statistical factor models, 220–221
Step-up callable note, valuation, 369–372
Step-up coupon schedules, 291
Stochastic calculus, usage. See Continuous stochas-

tic calculus
Stochastic differential equations (SDEs), 39–41,

116, 327. See also Ho-Lee SDE; Hull-White
SDE; One-factor SDE

binomial solutions, 53–60
distributional characteristics, 56, 61
mean term, 52
trinomial solutions, 53–60

Stochastic element, usage, 133
Stochastic interest rate process, 118, 433
Stochastic parameters, 336
Stochastic process, 324–326, 437. See also Discrete

time; Real-valued stochastic process
Stochastic term, elimination, 44, 50
Stochastic variable, 431
Stochastic volatility model, 208
Stock market crash (1987), 128
Stock returns

cross-sections, 221
models, 223

Stowe, D.W., 423
Stratified sampling, 343–344
Strike prices, 14, 123, 208, 373
Strike rate, 409
Strong Law of Large Numbers, 337
Structured MBS, valuation models, 476–483
Sub-index, creation. See Corporate sub-index
Subordinated tranches, 444
Supply-demand forces, 320
Support bond structure, 456, 459–465
Svensson, L.E., 148, 158
Swap curve

advantage, 138–141
construction, 137, 141–154
derivation, 142–148
inputs, 141–142
long end, 147–148
middle area, 143–147
quoting, 139
short end, 143

Swap fixed rate (SFR), 380, 389–390, 394, 403
increase, 417

Swap valuation. See Forward start swaps; Interest
rate

demonstration, 394
lattice

model, usage. See Plain vanilla swap
usage. See Cumulative swap valuation lattice

Swaps. See Accreting swap; Amortizing swap;
Index swaps; Roller coaster swap

basics. See Interest rate
cash flow, 380
counterparties, risk/return profile, 380
floating payments, calculation, 382–384
interpretation, 381
market, 138
payments, 380

present value, computation, 386
rate, 380. See also Continuously compounded

zero swap rate
derivation, 149

spread, 380
term structure derivation procedure, 138
value, 407

changes, 390–393
Swaptions, 4–6. See also Pay fixed swaption;

Receive fixed swaption
valuation, 309–420

lattice
interaction. See Expiration values
model, usage, 379

value
backward induction methodology, applica-

tion, 415–417
interest rate volatility, effect, 417–420

Systematic drift, 17
Systematic exposures, 277
Systematic risk

categories, 247
factors, 246

Systematic tracking error, sources, 246–255
Systematic wave, 167

Target (rate), 44, 48
Telmer, C., 40
Tenors

number, 178
points, 161–162

Ten-state two-factor Markov-HJM model, usage.
See Dual index amortizing floaters

Term premiums, 30, 112
Term structure. See Arbitrage-free term structure;

Correlations
arbitrage-free model, 11
calculation, 124–125
certain economy, 106–109
continuous time, 116–117
exposure, 245. See also Portfolio
factor, 18
factor models, 215, 235

types, 222–224
first principal component, interaction. See Vola-

tility
fitting, cubic spline methodology (usage). See

Interest rate
maturities, 84
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Term structure (Cont.)
movements, 248
no mean reversion, 60–61
numerical solutions, comparative study, 60–68
priced-based representation, 112
ramifications, 106
realistic process, 33
risk, 250, 267, 291
specifications, 485
theories. See Risk-based term structure theories
usage, 109
volatility, 11

Term structure modeling, 93
approaches

categorization, 28–33
usage, selection/timing, 33–35

continuous time, concepts, 112–117
discrete time, usage, 99–112
introduction, 94–99

Term structure models, 93, 96–100, 117–125, 318.
See also Dynamic term structure

applications, 125–128
approach, 333–337
calculation, 323–324
general assumptions, 120–121
generality, 117, 120

Term structure of volatility (TSOV), 8, 10, 61, 310
first principal component, interaction, 310–311

Teukolsky, S., 153
Theobald, D., 141
Theoretical fair value, determination, 126
Third shift component, 236
Three-factor model, 236
Three-factor term structure models, 469
Tibshirani, R.J., 18
Tilman, Leo M., 232, 296, 297, 308, 312
Time dependent parameters, 29
Time series. See Factor returns
Time to maturity, 142, 174
Time-steps, 335
Toy, William, 10, 40, 118, 210, 321. See also Black-

Derman-Toy model
Tracking error (TE), 242, 247. See also Annualized

tracking error; Cumulative tracking error;
Isolated tracking error

calculation, 265
components, 248, 286

combination, 264–266
computation, 250
decrease, 272, 277
improvement, 272
minimization, 277, 285
proposed transactions effect, projection, 271
representation, 268
sources. See Nonsystematic tracking error; Sys-

tematic tracking error
usage. See Passive portfolio

Tranches, 451, 456–465. See also Junior tranches;
Senior tranche; Subordinated tranches

average life, 455
Tri-diagonal matrix, 175

Gaussian elimination, 167
Trinomial interest rate lattice, 41
Trinomial lattices, 53, 56–57, 71, 335

Trinomial model, 52–54, 346
Trinomial solutions. See Stochastic differential

equations
Trinomial trees, 58
Two state Markov model, 12, 15

lognormal version, 20
usage. See Mortgages

Two state variables, 13
Two-factor model, 39, 345
Two-factor term structure models, 469
Two-period spot yield, 104

Uhrig, M., 20
UK gilt curve, information content, 90–91
Unbiased expectations hypothesis, 75, 77–80, 109
Unbiased hypothesis, 110
Uncapped FRNs, 436
Underperformance probability, estimation. See

Portfolio
U.S. Treasuries

bill rates, 492
bonds. See Cheapest-to-deliver Treasury bond
curve, flattening, 126
futures, 205
implied zero-coupon bonds, 229
issues, 95

on-the-run set, 97
market, 95
strip, 229
term structure, 20
yield, 16, 127

curve, 87, 96, 462
User-defined bonds, 291

Valuation. See Recursive valuation; Risk neutral;
Static valuation

algorithms, 5–6
features. See Mortgage servicing rights
lattices, 345. See also Swaptions

models, usage. See Plain vanilla swap
usage, 354–356

model. See Bond-price valuation model; Struc-
tured MBS

modeling. See Dynamic valuation modeling
pass. See Recursive valuation

Value. See Boundary
changes. See Swaps
determination. See Node
driver, 327
metrics, usage. See Interest rate models

Value at Risk (VaR), 37, 232
Van Deventer, D., 158
Vanilla reference set, 95
VaR. See Value at Risk
Variable. See Two state variables

addition. See Control variable
Variable roughness penalty, 182
Variance, 130, 188, 217. See also Return; Station-

ary variance
estimation. See Long-run equilibrium variance
matrix. See Residual variance matrix
reduction, 451

techniques, 343–344
simplification, 193
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Variance-covariance matrix, 232
Variance-reduction techniques, 337
Variates. See Antithetic variates; Control variates
Vasicek continuous stochastic time model, 145
Vasicek discount bond prices stochastic process, 144
Vasicek model, 7, 10–11, 40, 118, 198
Vasicek, Oldrich, 40, 102, 118, 125, 144, 158, 198
Vetterling, W., 153
Volatility, 121, 327. See also Historical volatility;

Implied interest rate caplet volatility;
Implied volatility; Long-rate volatility;
Power function; Short rate; Short-rate vola-
tility; Term structure

assumptions, 459
clustering, 201, 203
component. See Zero volatility component
curve. See Forward rate; Futures
estimation. See Interest rate; Yield volatility
increase, 408
level, 123, 491
measurement/forecasting. See Yield volatility
sensitivity, 18
smile, 208
structure, 50
term structure. See Term structure of volatility

Volcker era, 18

Wadhwa, Pavan, 295
Waggoner, D., 158, 182
Walter, U., 20
WAM, 292
Webber, N., 158, 159
Weighted average coupon (WAC), 338–339
Weighted average life (WAL), 482–483

replication, 483
Weighted-average OAS, 456
Weights, obtaining. See Node
Whipsaw, 465
White, A., 10, 40, 53, 144, 320, 423. See also Hull-

White binomial lattice; Hull-White model
Wichern, D.W., 310
Wiener process, 120, 123, 129, 144
Williams, George, 41, 241. See also Kalotay-Will-

iams-Fabozzi model
Willner, Ram, 224, 305
Wiseman, J., 158
Wizon, Adam, 295
Wu, Wei, 241

Yield. See Benchmark; Cash flow; Portfolio; U.S.
Treasuries

change, 61, 233, 249, 445
relationship, visualization, 96
shift, 231
spreads, 95

change, 126
computation, 457

Yield curve, 248, 345. See also Flat yield curve;
Humped yield curve; Inverted yield curve;
On-the-run yield curve; Par yield curve;
Price-yield curve; Spot yield; U.S. Treasuries

analysis/interpretation, 73
application, 177
beta, 306
contrast. See Short rate
determination. See Horizon yield curve; Par-cou-

pon yield
level, 224
long end, 90
movements, 236–237
observation, 122
over-smoothing, 148
risk, 265
scenarios, defining, 286–287
sensitivity, 339
shape, 74, 84

observation, 73–74
shift, 128, 224, 230–234
shocks/shifts, 127–128
short end, 83, 85, 235
suggestion, 74
views, 87–91

Yield curve-based valuation model, 223
Yield to maturity, 316

expectations hypothesis, 75, 80
Yield volatility. See Implied yield volatilities; Pro-

portional yield volatility
estimation, 187
forecasting, 187, 196–211
measurement, 187, 188
modeling, 196–211

Yin, John, 202

Zangari, Peter, 193
Zero volatility component, 318
Zero-coupon bonds (zeros), 94, 99, 121, 125–126,

323. See also Implied zero-coupon bonds;
Short-dated zero-coupon bonds; U.S. Trea-
suries

call value, 23–24
durations, 236
excess return, 226
frictionless/competitive market, 323
maturity, 79, 227–228
present value, 323
price, 124, 323, 329

PDE, 322
Zero-coupon interest rates, 147
Zero-coupon securities, 116, 278
Zero-coupon structure, 102
Zero-coupon Treasury bond, 447
Zero-coupon yield, 235–236. See also Bonds
Zervos, D., 158, 182
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